
REST API Auto Generation Using
Model-Based Approach

Master Thesis in Software Engineering

Salah Hussein

February 03, 2020

Advisors: Dr. Samer Zein
Thesis committee: Prof. Adel Taweel and Dr. Ahmed Tamrawi

This Thesis was submitted in partial fulfillment of the requirements for the
Master’s Degree in Software Engineering From the

Faculty of Graduate Studies, Birzeit University, Palestine.

Salah.Hussein
Stamp

Declaration

This thesis is an account of research undertaken between February 2019
and February 2020 by Salah Hussein, with registration number of 1155076,
at The Program of Software Engineering, Faculty of Engineering and
Technology, Birzeit University, Palestine.

Approved by the thesis committee:

Dr. Samer Zein, Birzeit University

Dr. Adel Taweel, Birzeit University

Dr. Ahmed Tamrawi, Birzeit University

Date approved:

i

Salah.Hussein
Stamp

Abstract

Demands on software applications increase rapidly day by day, especial
on mobile apps, where development environment is known for being
very rapid, with short-time-to-market and fierce competition. Most ap-
plications rely on web services as a REST web APIs. In the recent years,
usage of web services demonstrates exponential increment, which refers
to huge increment on connections after considering Internet of Things
(IoT), and also due to vast cloud usage that relies on SOA. But REST web
services development requires much time and efforts, and it is not easy
to understand. Therefore, backbone development is a very critical task,
and it needs a set of various skills and vast knowledge to be developed,
such as experience in SQL Database engines, tiers architecture, applica-
tion servers, and REST APIs. This study aims to improve productivity,
maintainability, and easy-to-build REST web services. Introduced ap-
proach based on a framework that abstracts layers in model, data access,
business logic, and web APIs. Traditional code generation was avoided
due its limitations. Based on the implemented survey and experiment,
results over the proposed approach shows a significant improvements
on productivity and easy to use, where development time was reduced
to less than the fourth. Furthermore, proposed architecture facilitates
maintainability, which is highly expected in results of survey.

Keywords: web services, REST APIs, SOA, code generation, backbone
development, software framework, productivity, maintainability, and
learnability.

ii

iii

Acknowledgment

I would first like to thank my thesis advisor Dr. Samer Zein of the En-
gineering and Technology Faculty at Birzeit University. The door to Dr.
Zein office was always open whenever I ran into a trouble spot or had
a question about my research or writing. He consistently allowed this
research to be my own work, but steered me in the right the direction
whenever he thought I needed it.

I would also like to thank the experts and companies who were in-
volved in the experiment and survey for this research project: ASAL
Tech, Jaffa.net, EXALT Tech, Harri, and Eng. Hadeel Hussein. With-
out their passionate participation and input, the experiment and survey
could not have been successfully conducted.

I would also like to acknowledge Prof. Adel Taweel and Dr. Ahmed
Tamrawi of the Engineering and Technology Faculty at Birzeit Univer-
sity as the second readers and committee members of this thesis, and
I am gratefully indebted to them for their very valuable comments on
this thesis.

Finally, I must express my very profound gratitude to my parents and to
my partner and children for providing me with unfailing support and
continuous encouragement throughout my years of study and through
the process of researching and writing this thesis. This accomplishment
would not have been possible without them. Thank you.

iv

v

Contents

Declaration i

Abstract ii

Acknowledgment iv

Contents vi

List of Figures x

List of Tables xiii

Acronyms xiv

1 Introduction 1
1.1 Introduction and motivation 1
1.2 Problem statement and main research projects 3
1.3 Research Gap and study objectives 3
1.4 Findings and contribution 4
1.5 Main research phases . 5
1.6 Overview of this report . 5

2 Background 7
2.1 REST – Representational State Transfer 7

2.1.1 Principles . 7
2.1.2 Operations . 9

2.2 ORM – Object Relational Mapping 10
2.2.1 Entity model . 10

vi

Contents

2.3 MDE – Model Driven Engineering 10
2.3.1 Metamodel . 11
2.3.2 Transformations . 11
2.3.3 Advantages of MDE 12
2.3.4 Disadvantages of code generation in MDE 13
2.3.5 Resource metamodel 14
2.3.6 Deployment metamodel 14
2.3.7 REST APIs modeling language (RAML) 15
2.3.8 Domain Specific Languages (DSL) 15
2.3.9 EMF – Eclipse modeling framework 15

2.4 RDF ontology model based 16
2.4.1 Data Model . 16

2.5 OData – Open Data Protocol 16
2.6 OpenAPI specification . 17

3 Literature Review 18
3.1 Introduction . 18
3.2 Literature search methodology 19

3.2.1 Method . 19
3.2.2 Source database . 20
3.2.3 Search strings . 20
3.2.4 Study selection criteria 20
3.2.5 Critical literature review 24

3.3 Guidance approaches . 25
3.4 EMF based approaches . 28
3.5 Model-driven code generation 29
3.6 RDF ontology model based approaches 32
3.7 OpenAPI model based approaches 34
3.8 Highlight the gap of knowledge 36
3.9 Summary . 39

4 Research Methodology 40
4.1 Introduction . 40
4.2 Experimental research . 41
4.3 Experiment design . 42

4.3.1 Hypotheses . 42
4.3.2 Procedure . 44

4.4 Data Collection . 45
4.5 Data Analysis . 45

5 Implementation 46

vii

Contents

5.1 Developed solution - RAAG Framework 46
5.1.1 Value added features 46
5.1.2 Technologies and platforms 47
5.1.3 Integration . 49
5.1.4 Architecture and design 49

5.2 Proposed approach . 52
5.3 Objectives realization . 52
5.4 Reference application . 53

6 Evaluation 56
6.1 Model example as learning material 56
6.2 Model exercise for experiment 58
6.3 Survey . 59
6.4 Experiment . 60

6.4.1 Participants . 61
6.4.2 First group . 62
6.4.3 Second group . 62

7 Results and discussion 63
7.1 Survey Results . 63

7.1.1 Sufficiency of learning material 63
7.1.2 Reliability of experiment 64
7.1.3 Framework quality 65

7.2 Experiment Results . 66
7.2.1 Collected data . 66
7.2.2 Analysis . 66

7.3 Threats to Validity . 70

8 Conclusions 73
8.1 Summary . 73
8.2 Goals achieved . 75
8.3 Recommendations . 76

A Tabular Information 77
A.1 Related work . 77
A.2 Implemented survey . 79
A.3 Results of 1st experiment . 79
A.4 Results of 2nd experiment 79

B Code Snippets 82
B.1 Model driven software development 82

viii

Contents

B.2 Resource description framework 83

C Source Code 85
C.1 Training example . 85

C.1.1 Model . 85
C.1.2 Services . 85

C.2 Experiment assignment . 85
C.2.1 Model . 86
C.2.2 Services . 87

Bibliography 98

ix

List of Figures

1.1 Main phases of research methodology. 5

2.1 MDA Abstraction Levels [55]. 11
2.2 EMF URI string structure. 15
2.3 RDF Description [46]. 16

3.1 Web APIs growth [54]. 18
3.2 Applied research process. 19
3.3 Selection process. 22
3.4 Studies per publication year. 24
3.5 DaaS [61]. 26
3.6 Prototype architecture with RESTFul web services [36]. 27
3.7 API Composer Overview [21]. 27
3.8 RDB to OData services Approach [23]. 29
3.9 From Requirements to Source Code [71]. 31
3.10 Rapid Realization of Executable Domain Models [69]. 32
3.11 MicroBuilder Architecture [68]. 32
3.12 data flow to generate APIs [25]. 33
3.13 Process of the OpenAPI [63]. 35
3.14 Example-Driven web API Specification Discovery [22]. 35

4.1 Main phases of research methodology. 41

5.1 Framework Architecture (RAAG). 50
5.2 Class diagram for reference application. 54
5.3 Screenshots for reference application. 55
5.4 Code metrics for reference application. 55

6.1 ER diagram for learning purpose. 57

x

List of Figures

6.2 Class diagram for learning purpose. 57
6.3 ER diagram for experiment exercise. 58
6.4 Class diagram for experiment exercise. 59
6.5 Likert scale options. 60

7.1 Sufficiency of learning material. 64
7.2 Reliability of experiment. 64
7.3 Framework quality. 65
7.4 Framework quality. 65
7.5 (A) Experiment results for G1 and (B) Experiment results for

G2. 66
7.6 (A) Spent time in G1 vs. G2 and (B) Time difference calcula-

tions. 68
7.7 (A) Spent time in G1.1 vs. G2.1 and (B) Time difference calcu-

lations. 68
7.8 (A) Raised model bugs in G1.1 vs. G2.1 and (B) Bugs differ-

ence calculations. 70

8.1 Contribution facets. 74
8.2 Approach categories among contribution facets. 75

A.1 Implemented survey. 80
A.2 Results of 1st experiment. 80
A.3 Results of 2nd experiment. 81

B.1 RAML API specification file Example. 82
B.2 YAML standard example – 1. 83
B.3 YAML standard example – 2. 83
B.4 RDF description syntax [46]. 84
B.5 RDF schema syntax [46]. 84

C.1 City entity model. 86
C.2 Country entity model. 87
C.3 Factory entity model. 88
C.4 Car entity model. 89
C.5 Part entity model. 90
C.6 Vehicle entity model. 91
C.7 Car web APIs. 92
C.8 Part web APIs. 92
C.9 Address entity model. 93
C.10 Student entity model. 94
C.11 Parent entity model. 95

xi

List of Figures

C.12 Person entity model. 96
C.13 Student web APIs. 97
C.14 Parent web APIs. 97

xii

List of Tables

3.1 Search strings that tried on library databases. 21
3.2 Study Include/Exclude Criteria. 22
3.3 Included articles of related work. 23
3.4 Approaches Pattern. 38

4.1 Cross-Group Design. 44

6.1 Survey Statistics. 61

7.1 Experiment descriptive statistics. 69

8.1 Research approach facets. 74

A.1 Related articles before filtration. 77

xiii

Acronyms

AOP Aspect oriented programming.. 39, 74

BNF Backus normal form. 34

BPEL Business process execution language. 34

CDI Contexts and dependency injection. 29

CIM Computationally independent model. 30

CRUD Create, read, update, and delete operation with database. 30

DaaS Data as a service. x, 26

DSL domain specific language. 29

EDM Entity data model. 29

EGL Epsilon generation language to generate code. 28, 29

EMF Eclipse model framework. 10

ETL Epsilon transformation language. 30

IoT Internet of things. 2

JAX-RS Java architecture for XML to build RESTful Web Services. 31

JAXB Java architecture for XML binding. 31

JET Java emitter templates for code generation. 28

xiv

Acronyms

JSON JavaScript object notation. 17

LDR Language data resource. 33

LRA Linked REST APIs. 33

MDE Model driven engineering. 10

OCL Object constraint language. 12

OData Open data protocol. 17

OpenAPI Format for REST APIs that used to describe your entire, it is
based on formerly Swagger specification. 17

ORM Object relational mapping. 10

PA Parallel Agile. 76

PIM Platform independent model. 30

PSM Platform specific model. 30, 31

RAAG REST APIs auto generation. 41

RDF The resource description framework. 16

REST Representational state transfer. 1

SOA Service oriented architecture.. 2

SOLID Single responsibility, Open closed, Liskov substitution, Inter-
face segregation, and Dependency inversion principles. 51

SWSG Safe web services generator. 34

WSDL Web services description language. 34

xv

Chapter 1

Introduction

In this chapter, general overview will be presented about rapid REST
API automatic generation RAAG, which introduced as master thesis in
the program of Software Engineering. Firstly, a brief background with
current status of REST web services and rapid development will be dis-
cussed to describe its importance for new technologies, then will sum-
marize problem statement, and overview current research focus with
a brief description about main research projects for this problem area,
hence research gap can be identified. Finally, study goals with specific
objectives will be addressed precisely, and then finish with findings, con-
tribution, progress, and document outlines.

1.1 Introduction and motivation

Recently, significant attention and efforts paid off on software develop-
ment techniques, to adapt and handle the huge demand on application
development, its requirements, and to deliver feasible business appli-
cations and solutions. REST based is the most common style used for
applications architecture. As opposed to these offers, challenges of de-
velopment and maintenance. Required efforts to implement and man-
age software products leads to big cost and huge resources. For exam-
ple, thousands of developed mobile apps online stores, require huge
resources to support, where their operating systems come from a vast
diversity and each one requires higher frequent upgrades [42]. More-
over, rapid development environment, short-time-to-market, and tough
competition impose to find more productive and flexible techniques.

Software development requires remarkable potential and huge time, where

1

1.1. Introduction and motivation

the most risky aspect is the maintenance fulfillment. In usual, it is
difficult to implement software or to understand an implemented one
for maintenance purposes. Software backbone development is a chal-
lenging area, where it needs significant efforts to properly handle thou-
sands of simultaneous actions. For instance, data availability, integrity,
confidentiality, and privacy must be handled precisely on time. There-
fore, wide knowledge with strong competences is an essential qualifica-
tions to proceed in this context of development. Furthermore, high per-
cent of developers are novice, and many of them are coming from non-
computing background. In particular, big sector of Android developers
are novice [32], so they tends to use auxiliary tools and frameworks.

In recent years, cloud architecture has seen rapid adoption in most en-
terprises, as systems infrastructure, which was a leading cause to real-
locate backbone components and services for thousands of systems and
applications. Backbone services of these systems have been migrated
out of on-premise to remote hosts facility, such as cloud services, where
cloud architecture relies on SOA web architectural style, and it interfaces
world wide through web services APIs.

Consequently, using web services figures exponential increment [54],
this increment refers to the huge adoption for the concept of Internet
of Things (IoT), which increased number of connections, where vari-
ous aspects of life and several kinds of things have been engaged with
internet. Therefore, huge admittance for IoT, clouds backbones, and
micro-services, all these increased usage of web services. REST style
is the new common architectural style for web services, which made a
big change in the world of web APIs, where most of time critical and
safety domains in the world have been redeveloped again according to
the REST architecture, such as government, finance, payment systems,
health, and military domains.

Design principles of Representational State Transfer (REST) was identi-
fied by Roy Fielding [27], In 2000, REST architecture follows the most
significant architecture, the World Wide Web architecture that based on
HTTP [28]. REST architecture realizes HTTP constrains [26], such as ad-
dress reliability, scalability, separation of concerns, and simplicity. There-
fore, architects and developers prefer REST style more and more [34].

According to prior work, several studies focused on rapid REST APIs
development, and introduced their approaches, techniques, tools, and
frameworks. For instance, code generation was the most significant ap-
proach in this field of research [20, 29, 68, 69, 71], which will be discussed

2

1.2. Problem statement and main research projects

in depth to avoid limitations and address research gaps. In this research,
proposed approach can rapid REST APIs developments without violat-
ing rules of flexibility and maintainability.

1.2 Problem statement and main research projects

It is a very difficult task to build backbone services over data model and
also to confirm consistent manipulations, since it requires deep knowl-
edge, skills, and experience in different technologies and platforms, such
as SQL Database engines, tiers architecture, application servers, and
REST APIs. Such these development skills can be intimidating even for
seasoned develops. On the other hand, frequent changes, rapid release
cycles in terms of market stress, and limited resources, all these factors
make a gap between design and implementation phases.

REST APIs development requires much time, and it is not-easy-to-use
and understand. Development and maintenance for REST architectural
software is a crucial, tedious, and error-prone work, so it requires huge
efforts, where implementing APIs via CRUD transactions while de/seri-
alizing operations means a lot of repetitive code and complicated tasks.
Moreover, realizing non-functional requirements and constrains based
on SOA is a non-trivial task, where many constrains have to be consid-
ered, such as loosely coupled, interoperable, scale-able, and efficient, ..
etc.

The main research projects that implemented in this problem area were;
Segura, et al. [61], Ed-Douibi, et al. [23], and Ed-Douibi, et al. [22]
studies that supported by Spanish government, Terzić, et al. [68] was
supported Serbian government, and Zolotas, et al. [71] that funded by
the European Commission.

Serrano, et al. [62] involved IBM Center in Canada Lab, Haupt, et al. [33]
was funded by BMWi, and Sferruzza, et al. [63], [64] were supported by
Startup Palace company. All these projects have been discussed deeply
in the chapter of literature review.

1.3 Research Gap and study objectives

In general, the adopted approach in prior work was the auto code gen-
eration, but it has a major downsides on software development process,

3

1.4. Findings and contribution

which will be discussed in background chapter. While in parallel, most
studies still needs more empirical studies to verify effectiveness.

The main goal of this study is the improvement on productivity, and
easy to build REST services. Efforts focused to develop a useful frame-
work that can create REST APIs rapidly, this approach should not affect
software flexibility or maintainability. Further, senior developers can
customize their own techniques over this approach without any restrict.
Research dedicated for Backbone of applications to build backend REST
APIs, where the detailed objectives as shown below:

◦ Reduce development time for backbone services, without impact-
ing architecture, flexibility, or maintainability.

◦ Reduce time to learn and to understand, which simplify the re-
quired human qualifications and experience to build backbone ser-
vices.

◦ Enable senior developers to customize their own code and imple-
mentation without restrictions.

◦ Avoid limitations of auto code generators, such as extra efforts,
code rigidity, code overriding, technical complexity, and limited
margins for senior developers.

◦ Enable loosely coupled manor with different frameworks, and keep
upper layers intact all the time.

1.4 Findings and contribution

Introduced approach consists of an umbrella framework to abstract lay-
ers of model, data access, business logic, and web APIs, methodology
has to use general and aspect oriented programming, polymorphism
and AOP, which generalizes REST APIs over derived models at runtime,
according to the particular designed patterns. And so, traditional auto-
matic code generation will not be used absolutely, this framework will
support most popular databases, and it can be extended for others eas-
ily and without restrictions or updates on methodology. Finally, study
approved the concept through a referenced application, and empirically
verified the effectiveness of methodology by an experiment with a sur-
vey that measure satisfaction and expectations.

4

1.5. Main research phases

1.5 Main research phases

◦ Used search engines to find related work from the most common
database resources, while using a clear criteria to include actual
related work precisely.

◦ Implemented a critical literature review for the documented prior
work over a classified groups.

◦ Developed a framework to facilitate and speed REST APIs devel-
opment.

◦ Designed and implemented a controlled experiment to evaluate
the developed framework, as illustrated in Figure 1.1.

Figure 1.1: Main phases of research methodology.

1.6 Overview of this report

Chapter 2 explains all the related concepts and technologies to provide
an adequate background for readers.

Chapter 3 introduces the relevant and documented prior work as set
of groups, it discusses related resources to address knowledge gap and
propose the new approach.

Chapter 4 discusses the methodology of study in order to gather and an-
alyze the data. It provides a general idea about the research experiments
and their design methods and components to conduct the research.

Chapter 5 discusses the empirical implementations through introducing
the framework specification, and overview the reference application.

Chapter 6 describes the introduced training material for participants,
and also discuses experiment’s assignment to explain how it is compre-
hensive and fit to research objectives.

Chapter 7 discusses and analyzes results of survey and experiment,
while explaining figured trends, tested hypotheses, and mitigated threats
to confirm the contribution.

5

1.6. Overview of this report

Chapter 8 summarizes results, highlights achieved objectives, and rec-
ommends for future work.

6

Chapter 2

Background

In this chapter, a general overview with adequate information will be
introduced about REST principles, object relational mapping, model
driven software development, RDF ontology model based, open data
protocol OData, and OpenAPI specification.

The follow sections will introduce all relevant concepts to simplify un-
derstanding of discussions in literature review, where prior work that
documented about “REST APIs rapid generation” is discussed deeply
to propose a new effective approach.

2.1 REST – Representational State Transfer

2.1.1 Principles

In 2000, design principles of Representational State Transfer had been
identified by Roy Fielding [27], specified principles known as REST ar-
chitectural style. The REST architecture is based on the most signifi-
cant architecture and the best known World Wide Web architecture [28],
and based on HTTP. REST architecture involves certain constraints to
address reliability, scalability, separation of concerns, and performance.
The following sections show the fulfillment of REST constraints to HTTP
[26], while each constraint was realized in WWW architecture, but some
of them should be explicitly fulfilled by developers themselves.

7

2.1. REST – Representational State Transfer

Layered client server

Based on WWW architecture, separation of client components out of
server aspects forms layered system structure on basis of HTTP spec-
ification, which is fulfilled by default as a very common architectural
style, where building any web based application is implicitly following
layered system.

Cache

Placing cache components between server and client components to han-
dle cached data, by marking response data as cache-able or not. HTTP
realized this constraint as part of WWW, it validates stale resources by
using defined fields in header to control caching.

Statelessness

Servers can’t keep session state for clients, but it can format data to pro-
vide client with required information to manage its state. In general this
constraint has to be fulfilled over hosted applications by developer who
design stateless application, for example, stateless or stateful session
beans in Java EE [33].

Uniform and constrained interface

Where all interactions should be based on HTTP operations (verbs) as a
small set of predefined known operations, which can be called uniform
interface. This constrain fulfilled HTTP specification, which defines GET,
PUT, POST, and DELETE set of methods [26], these methods procedure
a uniform interface over WWW, developers have to understand and cor-
rectly use methods of HTTP to fulfill this constrain.

Addressable resources

In HTTP, URIs are used to identify resources [45], where each resource
must be identified by a certain Uniform Resource Identifier (URI).

Representation oriented

HTTP realizes this constrain in the WWW architecture, where each re-
source may have different formats to be represented such as XML, JSON,

8

2.1. REST – Representational State Transfer

etc. and also representation is separated from its resource, HTTP pay-
load labels type of message body by relevant header attributes, types of
MIME media, and multiple representations [30].

Self-descriptive messages

Message includes all required information to understand and represent
resource. HTTP realizes this constrain using header to separate meta-
data out of message data in its body, such as types of MIME media that
specify message format.

Hypertext as the Engine of Application State (HATEOAS)

This constraint terms that application state of client is controlled on basis
of resource contents itself, hence, application interacts according to meta-
data as part of resource data. HTML satisfies this constraint using its UI
components e.g. hyperlinks and forms. For machine to machine inter-
action, representations are used. Therefore, developers have to design
representations in an appropriate way to address HATEOAS constraint.

When developing a service on basis of WWW platform, most of the
REST constraints are already satisfied by WWW standards over HTTP
with URI and MIME, but other constraints should be considered in right
service design and implementation, so developers apply uniform inter-
face by using HTTP verbs properly, and the same for HATEOAS con-
straint, where realizing these constraints are non-trivial task [28, 43, 58].

2.1.2 Operations

On basis of these principles, each request is handled as an indepen-
dent transaction and should be relied on group of HTTP methods only.
The following are HTTP operations that used in REST: GET: to retrieve
resource data. It is a read-only and safe operation. PUT: to update
resource data on server. POST: used data body to create resource, it
is unsafe operation of HTTP. DELETE: to erase a resource from server.
HEAD: same as GET, but reply with response code only with header
of request. OPTIONS: to request communication options e.g. security
capabilities.

9

2.2. ORM – Object Relational Mapping

2.2 ORM – Object Relational Mapping

It provides an approach and technique to enable object oriented systems
to interact with relational database, while considering concurrent, trans-
actions, and cache control. ORM bridges models and use of constraints
for the applications instead of doing that complex and repetitive task
in each application. Nowadays, multi-threading is essential to achieve
intensive system requirements, where interaction with database have to
be very carefully implemented. On 2002, Java open source project (Hi-
bernate) was started to realize ORM [50].

2.2.1 Entity model

Its properties acts as attributes of E-R, with persistent unique identifier,
such as the corresponding database primary key. Relationships 1-1, N-
1, and N-N cases are not directly managed by Entity Model, but can
be bridged via entity instances. Where Entity Model abstracts the con-
cept, and then provides configurable implementations. XML or anno-
tations used to map class inheritance hierarchy with chosen database
entities. ORM handles all details of associations at runtime, delivers ob-
ject graphs for multi-nested objects, and tracks CRUD operations [50].

2.3 MDE – Model Driven Engineering

Model Driven Engineering MDE approach has achieved importance dur-
ing the last decade. In MDE, a model is the main artifact and transfor-
mation is the major task in development process. Software is created by
transforming top level models to the next one, and so on, until reaching
to source code [67].

In MDE, UI, functionalities, and behaviors can be characterized as mod-
els [55], and models represent problem phenomena, where model is
a something that can be visualized, manipulated and motivated upon.
MDE based approaches, such as Model Driven Architecture MDA, Mi-
crosoft Software Factories, Object Management Group OMG, and Eclipse
Modeling Framework EMF. Where MDA is a development methodology
introduced by the OMG as initiative towards MDSD. Principle models
are Platform Independent Models (PIM) and Platform Specific Models
(PSM).

PIM identifies business logic independently, such as entities, associa-
tions, and capabilities in ERD, regardless of platform implementation

10

2.3. MDE – Model Driven Engineering

details. PSM covers all necessary information to create runnable soft-
ware with environment details, such as class diagram, which can be
generated by model-to-model transformation, and PIM to PSM.

Figure 2.1: MDA Abstraction Levels [55].

The MDA based on four abstraction layers by using modeling languages,
as illustrated in Figure 2.1. First layer M0 acts real world objects, includ-
ing the un-modeled ones. 2nd layer M1 or model layer abstracts specific
application logic, it is defined to conform to metamodel in layer M2. On
third layer M3, meta-metamodels used to define metamodels of meta-
models [66], where Meta Object Facility MOF is meta-metamodeling
language of OMG and Ecore is of Eclipse Foundation.

2.3.1 Metamodel

It specifies structure, semantics, and definitions of models’ family, such
as Common Warehouse Metamodel CWM, Enterprise Distributed Ob-
ject Computing EDOC, and Unified Modeling Language UML. Meta-
models used for languages (e.g. C#, Java, WSDL, etc) and architectures
(e.g. Web services, distributed, client-server, etc).

2.3.2 Transformations

It translates source metamodels to target once, model Transformation
can be used to model system based on concepts as resources instead of

11

2.3. MDE – Model Driven Engineering

specific code syntax. Then technical complexity is hidden into model
to code transformation. Hence developers face complexity once during
transformation extensions only.

Transformations are based on rules of a language, rules identify map-
ping between elements in source and target metamodels, as semantic
similarity, to be executed by an engine, such as EMF platform. One of
these languages is Atlas Transformation Language ATL that defined by
the Atlas Group [67], Query-View and Transformation Language QVT
by OMG, BOTL, and Yet Another Transformation Language YATL. En-
gines interpret transformation rules. The ATL is a toolkit that can be
used with Eclipse, integrated over its IDE [56], it provides Object Con-
straint Language OCL based language to facilitate rules definitions.

2.3.3 Advantages of MDE

Following are the main advantages of adopting MDE architectural style:

Separation of concerns

Separation between specification and implementation saves efforts when
focusing on business rules [13], and also includes new platform, only
new definition has to be extended as a separated transformation rules
for it [67]. Therefore, Business concerns are defined on the PIM models.
PIM can be transformed to PSM or to numerous PSMs that maintaining
business logic, such as: UML to C#, Java, or WSDL PSM models. And
also, it enables development of Domain Specific Language DSL to sim-
plify domain classes’ development, just as a new template of rules for
new domain.

Uniform architecture

As per transformation definition, all components of the models are ho-
mogeneous and constructed in the same way, which is more easy to
understand.

Rapid development

This approach rapids development, model to code transformation should
be adapted one time, and then all relevant classes can be generated. But
transformations as generators should be adapted, extended, and models
have be developed and maintained. Moreover, when a system has been

12

2.3. MDE – Model Driven Engineering

developed, it should be maintained with large number of components,
so speed becomes decried.

Reusability and interoperability

Same modeling languages and also generators can be reused for other
systems. PSM can be reused to generate code for a different platform
with same language, and also be interoperable for another platforms,
but metamodel should be extended.

Software quality

Software can be easily tested over a uniform systems, usually experts
develop transformation rules, and considering separation of concerns,
all of these can improve quality.

2.3.4 Disadvantages of code generation in MDE

Unfortunately there are also downsides to model driven software devel-
opment, especially in using code generators, as illustrated below:

High effort in initial stage

In the beginning of any project, environment have to be prepared as
well as to setup required platforms, auxiliary tool, and enough for team
understanding. In addition to architectural decisions of system, code
generation and model driven software development require another ar-
chitectural decisions to address concerns of MDSD. Therefore, modeling
and auto code generation approaches have to define and develop mod-
eling languages and transformations in the initial stage of each project.

Possibility of losing code

The generator is overwrites the already created classes with new gener-
ated versions. Therefore, code generators have to be adjusted to distin-
guish manually customized code, which means extra efforts and com-
plexity. Otherwise, in advanced stages of development, the manual cus-
tomized code might be overwritten after new code generation.

Code rigidity

Using code generators earnings many choices for developers, but it in-
troduces rigidity. MDSD developers have a restricted style for imple-

13

2.3. MDE – Model Driven Engineering

mentation. So, development bugs can be only solved, if they considered
it in the transformation or generation rules, otherwise, rules have to be
violated to avoid adapting generated files after generations.

Technical complexity

Adopting auto code generators, such as MDSD, often introduces new
developments MDSD tools in addition to systems development. More-
over, number of technologies have to be multiplied to define, process,
and transform models or auto generators, which requires huge efforts
to understand, maintain, and then it introduces further errors and bugs
sources.

Impacting engineering team and managerial levels

Senior software engineers dislike environments of code generation, since
it limits their experience, and makes them similar with junior, so they
leave teams, which impacts business of software developments.

2.3.5 Resource metamodel

The Resource Model only identifies links and relationships among re-
sources, which navigates API and then fulfill HATEOAS constraint. HA-
TEOAS feature is very important to satisfy loose coupling concern, and
also supports documentation process. Resource, Method, and Link are
the basic elements of resource modeling. Where resource element repre-
sents REST resource that holds attributes of entity and model. Method
element represents HTTP operations, and link element defines the rela-
tionship between two resources.

2.3.6 Deployment metamodel

The deployment model supports the relationship of resources with URIs,
it defines URI of a resource to be relative to other resources not only to
base URI, it includes mapping list of source and target elements. URL
fragment realizes deployment model by referring to static URL fragment
as string indicating a static path element, while dynamic URL points to
entity attribute of a resource model. Deployment model forms a tree,
which avoids cycles in the model and keeps only one path for resource.

14

2.3. MDE – Model Driven Engineering

2.3.7 REST APIs modeling language (RAML)

Used to explain parameters and endpoints of REST API and based on
YAML-based language, which facilitates operations’ representation in a
hierarchy mode to support Reusability. It forms a platform for some
tools, such as: online editor, automatic documentation generator, and
code generator. An example of RAML in Figure B.1.

2.3.8 Domain Specific Languages (DSL)

DSL occupies generality for expressiveness in a restricted domain, its
notations and constructions are provided to be relative to specific appli-
cation domain, which offers extensive improvements of expressiveness
to ease of use compared with General Purpose Languages GPLs, which
increases productivity and reduces maintenance.

2.3.9 EMF – Eclipse modeling framework

It is a modeling framework used as domain-specific languages, EMF
visualize metamodels as class diagrams with creation, opening, chang-
ing, and storing capabilities. Instances are saved as XML. The EMF uni-
fies XML, UML, and Java in its Eclipse IDE [66]. Ecore used to highly
abstract definitions of model as metamodel language over MOF imple-
mentation of OMG [24], and used to represent EMF models [17]. EMF is
considered as a key reference of modeling in Eclipse [24], it also builds
Java APIs to simplify their management.

EMF based on URI as structured string that consist of three parts; scheme,
scheme-specific part, and optional fragment, as shown in Figure 2.2. The
scheme is separated with colon ”:” to identify used protocol. As shown
in the below example: “https:// [applicationLink]/rest” is the URL of
the Web application, model Id identifies model and Model Instance Id
identifies model instance that being accessed. URL doings as an entry
point for a specific model instance and, which points to the root element.

Figure 2.2: EMF URI string structure.

15

2.4. RDF ontology model based

2.4 RDF ontology model based

It is a metadata framework that consists of structured XML syntax, it
supports data encoding, interchange, and reuse of data, and it provides
unambiguous operations to precise semantics. RDF means and vocabu-
laries (set of properties) have been designed to interface with both hu-
man and machine, and its metadata semantics are reusable and extend-
able. RDF transforms Web vast information from unstructured mass to
be manageable and more useful. W3C supported RDF development in
1995 to describe contents of web info, which can discriminate confiden-
tial, nudity, or violence contents [46].

2.4.1 Data Model

Model describes resources, each resource has properties or attributes
as any object, but it should be identified by specific URI. Description
includes a resource linked with its properties that consists from pairs
of types and values, where values might be atomic or another resource
[46]. Figure 2.3 illustrates description by example as conceptual, syntax
in Figure B.4 and Figure B.5.

Figure 2.3: RDF Description [46].

2.5 OData – Open Data Protocol

It creates Web services with comprehensive APIs to query and update
simply, it is according to a standard way as data access protocol. SQL
over URLs is similar to standard to facilitate its usage [53], it can expose
services out of different data sources, such as: file systems, relational
databases, and content management systems, it simplifies data access

16

2.6. OpenAPI specification

via services and RDF, it already used by SAP, IBM WebSphere, or JBoss.
It is approved as an OASIS standard [52].

Creating OData services is boring and consuming time, particularly for
relational databases. Where (i) data models have to be represented based
on EDM format, and then (ii) implement query and update for business
logic over URLs by query of OData, and (iii) transforming that queries
into SQL. Finally, (iv) de/serialization to exchange messages over OData
protocol as JSON or Atom format. OData SDKs are Apache Olingo3,
RESTier2, SDL OData Frameworks4, OData server6, Cloud Drivers5,
and Skyvia Connect7.

2.6 OpenAPI specification

It is known by its original name, where it was Swagger Specification, it
was developed and maintained by SmartBear Company, it called Open
API Initiative under Linux Foundation sponsorship. IBM, Google, and
Microsoft are founding members. API documentation specify how each
function or endpoint can be used with constrains [20].

REST APIs is being documented in different ways heterogeneously, based
on vendor approach, vast variety of descriptions difficult their under-
standing to implementers and other stakeholders. And to provide a so-
lution and standardize REST APIs Specification, on 1 Jan 2016, the Swag-
ger specification was renamed the OpenAPI Specification, and RAML
and API Blueprint were considered by the group. Where file speci-
fies API by: general information, available paths; operations of each
path (get/resources), and Input/output for each operation. OpenAPI as-
sumed as formal specification for REST APIs to describe them by JSON
or YAML format. As illustrated in Figure B.2 and Figure B.3.

17

Chapter 3

Literature Review

3.1 Introduction

Web services and Microservices are mostly based on REST APIs, REST
have made a revolution in the world of web APIs, where most impor-
tant systems over the world have been reengineered on basis of REST
architecture, such as financial, governance, and control systems. As per
the last study of ProgrammableWeb directory [54], study shows high in-
terest in providing APIs, which exceeds the 19000 API mark in Jan, 2018,
as shown in Figure 3.1.

Figure 3.1: Web APIs growth [54].

In usual, SOA architecture considers different types of software clients
that may handle backend services, these services should be enough ro-
bust to handle thousands of request simultaneously, where data avail-

18

3.2. Literature search methodology

ability, integrity, confidentiality, and client privacy should be processed
precisely with well performance. Therefore, backend development is a
very critical job, and it needs a several skills and vast knowledge.

In this chapter, the documented prior work around “REST APIs rapid
generation” will be discussed in depth to propose a new effective ap-
proach. Several researches were supported by major institutions such as
IBM, BMW, and some of them were supported by European governesses.
In the beginning, first sections discussed tracked stages in this research,
where these stages demonstrate how to apply critical review precisely,
and also show how to eliminate bias.

3.2 Literature search methodology

In this section, critical review is considered to review literature [31, 37],
discussions focus on the followed steps to collect and prepare material of
strongly related work, moreover to explore the used search strings and
the adopted criteria that include or exclude results, and hence catego-
rize and present the accepted results in a comprehensive demonstration,
which confirms completeness of prior work inclusion.

3.2.1 Method

Peterson and Kitchenham studies [47, 39] inspired the methodology for
this review. Furthermore, data analysis and assembly based on the rec-
ommendation of other studies [15, 48], which enables this study to intro-
duce a baseline in this research field.

Figure 3.2: Applied research process.

According to Petersen [47]; define research questions or objectives, search
conducts, screen papers, keyword abstracts, and data extraction are the
main stages for mapping process and critical review, as shown in fig-
ure 3.2. Where search conducts select primary studies, screen articles
classify scheme, some stages can be done in iterative manor.

19

3.2. Literature search methodology

3.2.2 Source database

The most used engines for academic databases search were:

◦ Google Scholar.

◦ IEEE Xplore.

◦ Springer Link.

◦ ACM Digital Library.

3.2.3 Search strings

Selection of keywords and terms enables to build an appropriate strings
to run specific search, which have to be reliable and hence address whole
related work. However, strings were well recognized over the related
terminology of literature.

Used strings were edited very carefully during search operation, strings
have been listed in a table and built accumulatively to be comprehen-
sive string, search string was being typed and updated based on search
results and previous used strings, and also strings were documented be-
fore using them in search to ensure the validity of context, as shown in
Table 3.1.

3.2.4 Study selection criteria

Search execution was done over all the online databases, search string
was built carefully according to results and used keywords or terms. Old
studies were used as snow ball papers that point to prior work by refer-
ences and followed researches from citations, and so on run through a
chain until discovering all related work.

Papers filtration go through three main iterative phases, as shown in fig-
ure 3.3. Where preliminary phase to run search string online engines,
first phase to filter studies on basis of title and the abstract, second
phase to read more sections, such as introductions, approaches, and
conclusions, and then filter gain and re-select. Finally, apply inclusion
or exclusion criteria after completing the reading of remaining papers,
as shown in Table 3.2.

After applying the above include – exclude criteria, 19 articles have been
selected and categorized from the entire list of papers, as shown in Ta-
ble 3.3.

20

3.2. Literature search methodology

Table 3.1: Search strings that tried on library databases.

Try String

29.09 23:09 framework to minimize development lifecycle
29.09 23:14 speed developing rest api
29.09 23:15 speed developing REST APIs
29.09 23:17 REST APIs development life cycle
29.09 23:21 REST APIs software development life cycle
07.10 07:02 increase software productivity
12.10 07:13 framework to speed software development life cycle
12.10 07:16 REST development framework
12.10 15:38 Rapid REST API development
12.10 15:43 Rapid REST development
12.10 16:02 ”Rapid RESTful development”
12.10 16:02 Rapid RESTful development
12.10 16:03 ”Rapid development”
12.10 16:03 ”rest Rapid development”
16.10 08:44 software development framework
18.10 16:45 Rest Rapid development
20.10 08:17 Rest Rapid software development
20.10 10:01 Wang: Rapid realization of executable domain models...
17.11 07:03 Musleha: Automatic Generation of Android SQLite Database...
17.11 07:13 Automatic Generation of Android SQLite Database

Components
27.11 10:49 The wte+ framework: Automated construction and runtime...
27.11 17:32 Supporting model-driven development using a process-cente...
28.11 07:37 An approach to code generation from uml diagrams
28.11 08:21 Automatic code generation using uml to xml schema...
28.11 08:22 ”Automatic code generation using uml to xml schema...
28.11 08:23 Model checking and code generation for uml diagrams...
05.03 21:58 build ”back end” services rapidly
05.03 23:25 Model as a service
08.03 11:09 Model as a rest service
08.03 21:25 entity as a rest service
08.03 22:30 entity to rest service
08.03 22:40 database table to rest service
08.03 22:50 oracle apex
09.03 09:00 apex rest
09.03 09:25 ”Application Express”
09.03 09:35 Query as a service
09.03 09:50 NoSQL database collections
09.03 00:05 ERD to rest services
15.03 00:28 Database driven Rest web service
16.03 03:45 Model-Driven Engineering approach for RESTful

Entity-based REST services generation

21

3.2. Literature search methodology

Figure 3.3: Selection process.

Table 3.2: Study Include/Exclude Criteria.

Criteria Description Comments

Empirical
Article

To include empirical article and
exclude conceptual ones, those
have not any data for experiment,
case study, or survey.

Very high ranked
may be considered.

Publish Date Consider new article and exclude
old one, any paper was published
before 2014, assumed as old article.

Closed to 2014 may
be considered, based
on its relevant rank.

Size Very short article with less than 6
pages, like conceptual ones, will be
excluded.

Rank of
Relevant

Articles that evaluated as more
than 5 of 10 rank can be included
in relevant work.

Evaluation based on
contents judgment.

According to the applied filtration criteria, 19 studies selected as related
work, most of these were published at 2017, 2018, 2014, and 2013, as
shown in figure 3.4. Where old studies have been considered in case of
strong relevant.

22

3.2. Literature search methodology

Table 3.3: Included articles of related work.

Approach Article

Guidance Developing a Prototype of Rest-Based Database
Application for Shipbuilding Industry: A Case Study.
A model-driven approach for REST compliant services.
ODaaS: Towards the Model-Driven Engineering of Open
Data Applications as Data Services
Semi-Automatic Generation of Data-Intensive APIs
APIComposer: Data-Driven Composition of REST APIs.
A Model Driven Approach for the Development of
Semantic Restful Web Services.
Structural and Behavioral Modeling of Restful Web
Service Interface Using UML.

EMF Based EMF-REST: Generation of RESTFUL APIs from Models.
Model-Driven Development of OData Services: An
Application to Relational Databases.

Model driven
with Code
Generation

Rapid Realization of Executable Domain Models via
Automatic Code Generation.

From Requirements to Source Code: A Model-Driven
Engineering Approach for Restful Web Services.
Microbuilder: A Model-Driven Tool for the Specification
of Rest Microservice Architectures.
Model-driven Code Generation for REST APIs.
Restful Web Services Development with a Model-Driven
Engineering Approach.

RDF ontology
Model Based

Linked REST APIs: A Middleware for Semantic Rest API
Integration.
(Semi) Automatic Construction of Access-Controlled web
Data Services.

OpenAPI
Model Based

Example-Driven web API Specification Discovery.

Extending OpenAPI 3.0 to Build Web Services from Their
Specification.
A Model-Driven Method for Fast Building Consistent
Web Services from OpenAPI-Compatible Models.

23

3.2. Literature search methodology

Figure 3.4: Studies per publication year.

3.2.5 Critical literature review

On basis of readings for abstract sections, the selected papers from en-
tire results have been totaled 54 important papers for this study. After
deep investigation, related studies were found in 31 articles, as shown
in Table A.1, related papers have been evaluated from different perspec-
tives, such as relevant rank and date of research, with comments. Finally,
while applying include – exclude criteria, articles have been filtered to
19 exact related studies, as discussed in the next section.

By selecting the exact related work, review process can be started, while
considering critical literature review [31, 37], but the big number of arti-
cles makes critical review more difficult to match and compare. There-
fore, studies have been classified into five categories based on their con-
tributions, which simplifies the process of critical review among few
number of paper groups, this classification mainly considered contribu-
tion since review and analysis have to find gaps among different contri-
butions, which should be addressed in this study.

First seven articles have proposed guides as a method to rapid produc-
tivity and simplified development process, so first category is consid-
ered as guidance approaches. The next two studies have introduced
the extension of Eclipse modeling framework EMF, with some variance,
as a solution for the same addressed problem in the prior group, so
the second group of papers is considered as an EMF based approaches.
Another next five studies have generally proposed model-driven code
generator as a methodology, where other three studies have used RDF
ontology model based as a method, and the last three studies have ex-
ploited OpenAPI specifications to provide solution that using OpenAPI

24

3.3. Guidance approaches

model based concept.

The five categories should be discussed deeply in the next sections based
on their contexts, major addressed problems, contributions, assump-
tions, employed methodologies, and addressed limitations and gaps for
future work.

3.3 Guidance approaches

In this section, seven studies were described [61, 33, 67, 19, 21, 36, 57],
articles in this group proposed a guidance approach in general, except
some of the introduced supplementary tools, utilities, and frameworks.
Some of these researches were supported and sponsored, for instance
Segura, et al. [61] was supported by Spanish ministry of economy, and
Haupt, et al. [33] was partially funded by BMWi project Migrate. Half
of these articles were published in IEEE.

Most papers in this group used empirical case study to proof their con-
cept, such as Bill of Materials, hotel booking, and YSN (Yahoo News
Search) for Tavares and Vale [67]. In general, they addressed the prob-
lem in a much time to explore and discover data model behind REST,
where heterogeneous formats require too much particular pre-processing
steps to identify and analyze that model structure. Moreover, they point
to the crucial, tedious, and error-prone process to build and maintain
that structure, and use various technologies halts interoperability. Fur-
thermore, Haupt, et al. [33] diagnosed the problem as lack attention
to build compliance REST that keeps loosely coupling, scalability, and
efficiency.

Authors assume that web-based approach increases productivity by re-
ducing development time and also minimizing maintenance efforts. Model
driven software development (MDSD) leads for better code quality with
less errors, better Reusability and maintainability over standardized code,
and better portability based on separation of concerns (PIM & PSM). On
the other hand, Haupt, et al. [33] assume that developing compliant
REST applications is a crucial and non-trivial task, where object oriented
structures and relational data structures are not mutually compatible.

Studies contribute in solving the above mentioned problems by introduc-
ing their approaches on basis of model-driven engineering. In general,
proposed approach advises to use specified architecture as a set of utili-
ties and technologies in a unified and extensible framework, which auto-

25

3.3. Guidance approaches

matically composes and orchestrates REST APIs while discovering data
models, and it identifies matching concept and global model. Such these
architectures use unified modeling language UML to design structural
and behavioral REST services, and in the same time consider the separa-
tion of concerns through multi layered model design. Moreover, Tavares
and Vale [67] approach raised up the level of development abstraction by
providing meta-model language for resources and services, which sup-
ported interoperable development through model transformation con-
cept. Costal, et al. [19] study goes farther while semi-automating the
generation process for the data-intensive APIs.

The employed methodologies tends to guide practitioners how to use
the most efficient and suitable technologies in a certain sequence and
context, where the suggested technologies are already aligned with REST-
based architecture, with three main layers as data mapping, business
logic, and web-based APIs. In the first layer, guides focus on using
common and mature platforms in frameworks, such as Grails ORM [36],
data models derived by resource entities and relations, models derived
by an abstract strategy, and extract source ontologies with variant for-
mat (CSV, XML, JSON, relational, and RDF) [19]. Second layer guides
to employ certain language for middleware, such as Groovy on Grails
framework, and use UML state machine to represent structural and be-
havioral aspect, it also guides to implement a model to model transfor-
mation based on Eclipse plugins for code generation (Figure 3.5), and
use data injectors to engage reusable libraries, it also guides to produce
a single global ontology by constructing, enriching, and refactoring it
iteratively [19].

Figure 3.5: DaaS [61].

In third layer, web-based APIs rely on REST architecture and use JAX-
RS Grails with Spring security Grails plugins [36], which provides trans-
formation rules to generate data-intensive Web APIs, such as GraphQL,
REST APIs [19], OpenAPI extension, and binding metamodels over EMF
implementation.

26

3.3. Guidance approaches

Introduced maintenance and change process by Jeon and Chung [36]
requires manual edit for Groovy code in the domain model class, and
also needs to update corresponds properties with data entity.

Figure 3.6: Prototype architecture with RESTFul web services [36].

And moreover, developers should manually modify code of JavaScript
and Groovy server pages to maintain intended REST service, where the
overall methodology illustrated in Figure 3.6.

API composer approach that used by Ed-douibi, et al. [21] takes inputs
of REST APIs as OpenAPI definitions to compose them, where these
definitions are supplied by API provider and generated by API discov-
erer. OpenAPI based over EMF, and OData relies on Apache Olingo13.
Composer includes two components, an importer and resolver, where
importer creates OData metadata by UML and binds model to integrate
REST APIs with global, meanwhile resolver requests over OData service
as data model. Unfortunately, this approach is suitable for data retrieval
only, as shown in Figure 3.7.

Figure 3.7: API Composer Overview [21].

Limitations for future work

Some gaps have been addressed to be covered in future works, authors
themselves addressed these limitations, such as limitations in CRUD op-
erations, transactions processing, files attachments [36], and incomplete
automation. Moreover, more evaluation is needed to evaluate and proof

27

3.4. EMF based approaches

the proposed concepts [19].

3.4 EMF based approaches

In this section, two studies were discussed [23, 24], in general proposed
approaches rely on Eclipse modeling plugins. Ed-Douibi, et al. [23]
research was supported by Spanish government, and it have been pub-
lished recently, 2018.

Eclipse plugin have been developed as an empirical case study to proof
the concept of Ed-Douibi, et al. [23]. Articles addressed the problem
in a time-consuming and tedious task to build services, where all the
following tasks are not easy or trivial, such as presenting data models
in service format, implementing business logic and transform service
request into SQL statements, and serializing de-serializing exchanged
messages. Ed-Douibi, et al. [24] in first publication, 2016, identified
the problem, at that time, desktop-based scenarios used instead of web-
based, which restricts framework capabilities.

Assumptions in this section consider that web-based architecture facili-
tates collaborative development between modelers, such as cloud mod-
els, and also model driven engineering paradigm contributes in rais-
ing the level of abstraction and then promote automation process of
software development. On the other hand, SDKs and OData services
still require advanced and deep knowledge to be used, such as SDL
OData Frameworks4, Apache Olingo3, RESTier2, Cloud Drivers5, OData
server6, and Skyvia Connect7.

Contributions in this section can be summarized in a proposed approach
to generate REST-based web APIs over EMF data models, depending on
common libraries and standards to facilitate maintainability and com-
prehension, and also to integrate model with validation and security
feature and capabilities. Following to model definition, all the required
artifacts have been derived from UML to semi-automate OData services
out of relational database [23].

The employed methodologies in this section automate code generation
for REST implementation, where EMF-REST approach [24] generates
REST APIs out of Ecore models by using JET and EGL templates for
model-to-text transformations, (i) start in Maven-based project, (ii) ex-
tend EMF to include JAXB and validation, (iii) use JET templates to
produce corresponding code for JAXB annotation and OCL validation

28

3.5. Model-driven code generation

methods, (vi) use EGL model-to-text transformations to generate JAX-
RS, CDI and EJB code.

Figure 3.8: RDB to OData services Approach [23].

OData models were used by Ed-Douibi, et al. [23], where (i) OData
meta-model over EMF to define Entity Data Model (EDM), SQL trans-
formation, sterilizer, and formatter, (ii) OData services relies on Apache
Olingo20 for query and serialization, JOOQ21 provides a DSL to build
SQL queries, (iii) OData server is generated by simple-odata-server29
and JayDATA30 out of entity model with corresponding database, (vi)
proof-of-concept by Eclipse plugin to generate meta-model, database
DDL, and OData service in Maven-based project. Figure 3.8 illustrates
approach of relational database to OData services.

The major addressed gaps and limitation to be covered in future works
were such as adopt unsupported libraries, and enable DSL configuration,
as mentioned by authors.

3.5 Model-driven code generation

In this section, five studies were discussed [20, 29, 68, 69, 71], articles pro-
posed approaches that based on model-driven code generation. Most
articles have been published in the last two years. Zolotas, et al. [71] re-
search was supported by Collaborative Project that funded by the Euro-
pean Commission, and Terzić, et al. [68] research was supported by Min-
istry of Education in Republic of Serbia. Studies have used method of
empirical case study to proof their concepts, where da Cruz Gonçalves
and Azevedo [20] built their case study using application of health and
wellness for Android and Web, and they compared developed solution
with the experimental manual work.

Articles addressed the problem in a time-consuming and tedious task to

29

3.5. Model-driven code generation

build services, where the uniform interface style of REST services means
a lot of repetitive code, and also the similarity between written code for
CRUD operations leads to tedious and repetitive tasks, and in the same
time, service functionalities such security, database transactions, and
model driven approach, these are crucial and require huge efforts to
be developed and maintained. Wang, et al. [69] exceed these definitions
to diagnose a gap between design and implementation, they believe that
it is due to frequent changes and rapid release cycles in terms of limited
time and resources.

Articles assume that model driven software development approach is
more difficult than traditional approach [69], which needs training and
more identification since most developers don’t have these skills. By
refereeing to practitioners [35], Zolotas, et al. [71] assume that model
driven engineering MDE facilitates code automation, reduces defects,
and improves productivity, quality, understand-ability, [20] consistency,
and maintainability. Other articles [20, 29, 68, 69, 71] also assume that
compliance of web services with cloud and IoT makes REST very impor-
tant and essential.

Major proposed contributions were addressed in using UML to model
system domain, then automatically generate code of common operations
for database access, and then wrap generated code within RESTFul APIs,
hence measured efforts will be positively impacted and applications be-
come more flexible and reusable. Transformation from model to model
was also proposed to keep the flexibility and portability [29].

The employed approach in this section can be structured into three main
stages, The development of a (i) platform specific model with CURD op-
erations, (ii) transformation from model to model or to text, such as code
syntax, and (iii) reference API. For the first stage, UML domain model-
ing used to clear uncertainty and to be more compliant with SOA, and
based on the model, database functions can be assigned to manipulate
data (CRUD: create, read, update, and delete), Hibernate and Lucene
ORMs were used [71]. In general, authors ensured that design of do-
main model is reusable, loosely coupled, independent, and not rigid.

For the second stage, two types of transformation were used, a model
to model and model to text that used to generate application code, for
model to model, Fischer [29] used Epsilon Transformation Language
ETL, it used to translate platform independent model PIM to platform
specific model PSM, and also Zolotas, et al. [71] deigned three transfor-
mations, CIM-to-PIM, PIM-to-PSM, and then generates code by trans-

30

3.5. Model-driven code generation

forming PSM to source code, as shown in Figure 3.9, with related re-
sults.

Figure 3.9: From Requirements to Source Code [71].

In the last stage, the approach of splitting large service into small ones
was adopted, which makes micro-services more suitable for REST ac-
cessibility, and based on this methodology, code generators creates ex-
ecutable program. As per Zolotas, et al. [71], PSM models will com-
press Java, Hibernate and Lucene ORMs, JAXB for XML to Java, and
JAX-RS over Jersey implementation, but unfortunately, in most cases
the developer needs to add manual code. Terzić, et al. [68], da Cruz
Gonçalves and Azevedo [20] used DSL to provide architecture specifica-
tion for REST micro-service. DSL extends OpenAPI with its grammar
that is in conjunction with base Java grammar foundation.

Wang, et al. [69] approach is compatible with NoSQL database only,
backend was deployed on Amazon cloud (AWS) with MongoDB and
NodeJS, according to the above described methodology, as shown in
Figure 3.10, with results.

MicroBuilder tool was built over EMF, Terzić, et al. [68], they used Mi-
croDSL over Xtext language to consist a generated code of user-defined
and Netflix micro-services over Spring (Cloud) and Amazon NetflixOSS
frameworks, with MongoDB database, where the generated code spread
over four layers as REST APIs that acts as the controller, service as busi-
ness logic, repository as data management, and class as object values for
business entities. Abstraction on the level of controller is over all user
micro-services of business entities to specify basic CRUD operations of

31

3.6. RDF ontology model based approaches

Figure 3.10: Rapid Realization of Executable Domain Models [69].

REST APIs, as shown in Figure 3.11, with its related results.

Figure 3.11: MicroBuilder Architecture [68].

Limitations for future work

Several gaps have been addressed for future works, such as verifying
feasibility of proposed solution with relational and graph database [69],
farther evaluation for effectiveness (product quality and time reduction)
of the proposed methodology [71], and investigate detailed to analyze
proposed approach using case study [68].

3.6 RDF ontology model based approaches

In this section, two studies were discussed [62, 25], authors used the
concept of Linked-Data RDF ontologies as a semantic layer to generate
REST based services. Center for Advanced Studies of IBM in Canada
Lab was involved in Serrano, et al. [62] research.

Empirical case studies were used to proof their concepts, research-data
management application used by Serrano, et al. [62] and Eng, et al. [25]
used fitness application. Addressed problems in this section were as the
difficulty of building SOA applications, which needs huge number of
underlying services, and so, these services overlapped and become hard

32

3.6. RDF ontology model based approaches

to reuse and maintain its mapping [62], while in parallel, market stress
increased dramatically to harness economic value [25].

Authors assumed that developing web APIs still needs a considerable
efforts to be done, middleware of linked REST APIs can reduce manual
work of software backend developers [62], and it is a complicated task
to keep confidentiality and privacy constraints while developing REST
web services [25].

Major contributions were proposed in the developed middleware to com-
pose APIs calls that respond to data queries, and also in the developed
RDF model that characterizes access control over these APIs [62]. Eng,
et al. [25] developed model driven approach creates web data APIs by
using automatic generation out of relational databases.

The common proposed methodology in this section, was divided into
four main stages, (i) data model extraction out of database by using
ORM library, (ii) manual mapping for the extracted data model with
relevant ontologies, (iii) four manual steps to assign role based access
control permissions via annotations, and (vi) use identified resources
and template engine to generate code of REST services automatically.
For the second mapping stage, Eng, et al. [25] built an interactive edi-
tor tool called Karma, which list the un-mapped tables in a visualized
interface, and enable developer to manually assign or confirm the most
appropriate RDF concept for each table, as shown in Figure 3.12.

Figure 3.12: data flow to generate APIs [25].

By Serrano, et al. [62] the four stages were combined rigidly in a one
middleware layer, which utilizes Linked Data RDF ontology to annotate
REST APIs semantically, LDR was selected for its flexibility and to ex-
press association among service elements. LRA middleware provides
APIs to handle SPARQL query that considers constraints of access con-
trol.

Limitations for future work

Addressed gaps that may be covered in future works, such as quantify
effectiveness of the proposed middleware and to mature how much is it

33

3.7. OpenAPI model based approaches

easy to be used by developers [62]. Use automatic generation to extend
usage of MDE principles to cover streaming APIs instead of REST APIs
[25].

3.7 OpenAPI model based approaches

In this section, three studies will be discussed [22, 63, 64], authors built
their approaches to be complaint with OpenAPI specifications. Ed-Douibi,
et al. [22] work has been supported by the Spanish government, [63, 64]
supported by company of Startup Palace, a web agency that evolves in
this context.

Problems Addressed in this section were as the following, most REST
APIs released without any specifications, which can be used automati-
cally by machine or developers, specs facilitate understanding and use
for integration purposes [22], manual documentation often causes mis-
alignment between model and web services, and OpenAPI model re-
quires manual update in case of change on service APIs [63, 64].

Authors assumed that web APIs are becoming as the backbone of web
applications, cloud services, and mobile applications. The leading ap-
proach for web APIs is the REST architecture [22], and so abstraction is
a neediness for software development process to express, independent,
reuse, and change features [64].

Articles in this section proposed the following contributions, using an
example to call REST web APIs to fetch and generate specifications of
model based OpenAPI, which proposed as an example driven discovery
approach and implemented through a tool to discover APIs [22], extend-
ing OpenAPI specification to build web services based on MDE, it uses
visualization and code generation to express high-level representation
of web services, it is based on SWSG tool expansion (Safe Web Services
Generator). They built a tool to verify consistency of extended OpenAPI
models with code generation for corresponding services [63, 64].

The common proposed methodology in this section, was as the follow-
ing, (i) extends meta-model of web services and also extends the SWSG
tool as per Sferruzza, et al. [63], as shown in Figure 3.13, (ii) defines
a metamodel for web services using BNF grammar without relying on
any standards descriptive, such as WSDL or BPEL, (iii) then introduces
a compacted and readable concrete syntax for the model and services,
and (vi) extends process and service parts of OpenAPI 3.0 with good

34

3.7. OpenAPI model based approaches

abstraction for Reusability and flexibility, but due to rigidity, it will over-
ride any customization based on specific business requirement, where
the above three steps seems as re-inventing the definition of web API
[64].

Figure 3.13: Process of the OpenAPI [63].

But Ed-Douibi, et al. [22] followed different approach over OpenAPI,
by (i) creating an intermediate out of OpenAPI specifications that based
on model representation, intermediate can generate, transform, analyze,
and validate the discovered specifications, (ii) generating definitions of
OpenAPI as JSON Schema, (iii) integrating APIs into model driven pro-
cess, where discovered specifications added incrementally into OpenAPI
model, as shown in Figure 3.14.

Figure 3.14: Example-Driven web API Specification Discovery [22].

Limitations for future work

Addressed gaps to be covered in future works, where the proposed ap-
proach [64] have to be evaluated in more realistic and larger case stud-

35

3.8. Highlight the gap of knowledge

ies, these studies should rely on enough correlated metrics with the
proposed approach.

3.8 Highlight the gap of knowledge

Prior work has been classified among five different groups, as men-
tioned in the above sections, work documented in around twenty arti-
cles, as exact related papers. Contributions as per each category were
addressed as guidance, Extending Eclipse modeling EMF, model-driven
code generator, RDF ontology model based, and OpenAPI model based
approaches. Contribution of each category has already been explained
in the previous sections with their limitations and gaps, as per authors
themselves, and also it will be discussed from the perspective of this
study, as followed below.

Guidance approaches in prior work [61, 33, 67, 19, 21, 36, 57] docu-
mented their methodology as a sequence of recommended stages, in
each stage a common or standard libraries should be used. Some articles
consider the contribution by following guides as an umbrella framework
[23, 24], but technology selection without any automation or abstraction
to improve productivity effectively, which can at most be considered
as strategic shortest path, and it may be classified as minor improve-
ment over a manual work, even though, these article haven’t included
an empirical assessment for efficiency impacts [67, 36, 57]. Tavares and
Vale study [67] used abstraction, but with many manual implementa-
tions. Other articles used model to model transformation frameworks
as a code generator [61, 33], such as one of Eclipse IDEIII, unfortunately
both of them haven’t done an empirical proof of concept. The imple-
mented proof of concept for semi-automatic generation was not enough
as per Costal, et al. [19] themselves. Even though Ed-douibi, et al. [21]
approach is suitable for data retrieval only, and moreover it relies on a
very complex tool, which limits the maintainability and support.

EMF based approaches in prior work [23, 24] have documented their
methodology based on extending EMF as a model driven approach.
Both of these studies have not used an empirical proof of concept, where
Eclipse plugin just a tool, and can’t be considered as an empirical proof
of concept for the study of Ed-Douibi, et al. [23].

Model-driven code generator approaches in prior work [20, 29, 68, 69,
71] have documented their methodology based on generating REST APIs
code for data models, automatically. All the published studies in this

36

3.8. Highlight the gap of knowledge

context have built code generators to generate REST APIs with all nec-
essary backend artifacts. Although of generators benefits, it has a major
downsides on the development process, such as: huge initial efforts,
code rigidity, possibility of losing code, technical complexity, and im-
pacts engineering team and managerial levels, these downsides have
been discussed with details in Section 2.3.4. Moreover, Wang, et al. [69]
study feasibility has been only verified on object oriented databases, so
it should be verified on relational database, which is most common and
requires more efforts. Abstraction level in the study of Terzić, et al. [68]
is not clear enough if it needs manual implementations or not, and also
it needs empirical proof of concept.

RDF ontology model based approaches in prior work [62, 25], have doc-
umented their methodology on basis of RDF ontology with linked data
model. Developed middleware in Serrano, et al. [62] study forms an
extra stage, it correlates REST APIs with a special data query to handle
CRUD operations using query style, which means extra efforts to imple-
ment, support, maintain, and train. Although of that, it needs verifica-
tion by controlled empirical studies to quantify the effectiveness and the
ease-of-use, as per authors themselves. Eng, et al. [25] have documented
a flexible and robust methodology, but they use automatic approach to
generate syntax code of REST APIs, which impacts the development pro-
cess, as discussed in Section 2.3.4, and also it needs empirical studies to
measure its effectiveness.

OpenAPI model based approaches in prior work [22, 63, 64], have doc-
umented their methodology based on OpenAPI model specifications.
This approach strongly depends on the code generation methodology,
rigidity is highly appears in addition to the other downsides of auto-
matic code generation, since any new code generation may override
customized code. Moreover, this approach in general relies on a very
complex platform, it includes special grammar [64], which needs deep
understanding, and continuous support with maintenance. From the
results perspective, approach should be evaluated through a more re-
alistic and larger case studies with a solid correlated metrics, as per
authors Sferruzza, et al. [64].

In general, most approaches used code generation methodology, and
on the other hand most studies have not verified the effectiveness by
empirical proof of concept, evaluation of productivity and easy-to-learn
is an essential to proof such of these approaches. Except the first group
of studies as a guidance approaches, and Terzić, et al. [68], all the other

37

3.8. Highlight the gap of knowledge

Table 3.4: Approaches Pattern.

Approach Used code
generator

Applied
effectiveness
POC

Guidance 1 0
Extending Eclipse modeling EMF 2 0
Model-driven code generator 5 3
RDF ontology model based 2 0
OpenAPI model based 2 0

researches used code generation, and on the same time, they haven’t
applied an effectiveness proof of concept, except few ones [20, 29, 69],
where articles demonstrate this conclusion, as shown in Table 3.4.

The introduced approach consists of an umbrella framework to abstract
layers of model operations, data access, business logic, and web APIs.
Methodology use general and aspect oriented programming AOP, which
generalizes REST APIs on basis of derived models at runtime and ac-
cording to particular design patterns, this approach can be verified in a
solid empirical proof of concept.

In this study, abstraction approach is adopted to generate REST APIs
automatically, which can cover more than 90% of required coding. De-
signed patterns have been integrated in a framework as an umbrella
to engage all the required utilities and other frameworks. Utilizing dif-
ferent frameworks in a unified and sustainable way, which enables de-
velopers to base their applications on the latest standard frameworks
and tools, which can exploit others’ efforts in different aspects while en-
gaging it under the umbrella in a loosely coupled manner. The upper
tiers of umbrella exposes a sustainable interface on which developers
can build their layers independently in an effective way. This approach
gains all benefits of other’s work, and avoids rigid code of generators
that have downside, where details can be found in research methodol-
ogy and implementations chapters.

This approach abstracts complex, dummy, and repetitive coding in a
reusable and upgradable manner to rapid REST APIs developments in
easy way, which keeps built systems up-to-date and understandable
when relying on a standard, common, and supported frameworks, such
as SpringSTS, ORM, JAX-RS, and Modeling. However, traditional auto-

38

3.9. Summary

matic code generation will not be used absolutely, this framework will
support most popular databases, and it can be easily extended for others
and without restrictions or updates on methodology. Finally, methodol-
ogy effectiveness will be verified empirically.

3.9 Summary

In the beginning of this chapter, importance of REST architecture have
been explained as the main used approach now a days, where its us-
age have being increased exponentially as an excellent compliance with
cloudy and IoTs platforms.

Critical literature review was adopted to recognize knowledge gap and
to highlight limitations that can be considered in this research, search
strings have been built and documented carefully to avoid missing or
gaps. Search process has been applied over the main data sources and
engines, such as Google scholar, IEEE Xplore . . . etc. collected articles
have been evaluated, ranked, and filtered based on a clear include –
exclude criteria, where the accepted studies have been classified in a
groups, each group explained as an overall with a deep comparisons.

All groups have been discussed deeply to show gaps, limitations, and
conflict of concerns, where most approaches used auto code generators,
which has major downsides, as discussed in Section 2.3.4. Meanwhile,
most studies still need more empirical a proofs to measure impacts of
productivity and easy to use and learn.

Introduced approach consists of an umbrella framework to abstract lay-
ers of model operations, data access, business logic, and web APIs.
Methodology has to use general programming and aspect oriented pro-
gramming AOP, which generalizes REST APIs on basis of derived mod-
els at runtime and according to particular design patterns, this approach
can be verified in a solid empirical proof of concept.

39

Chapter 4

Research Methodology

To determine the appropriate methodology, problem nature has to be
investigated [60]. So, to address the specific nature of problem, research
focus should be conducted through the research subject, objectives, and
field, as per design categories of Pérez [51]. And based on the litera-
ture review and the proposed approach, hypotheses will be defined to
determine experiment with the appropriate method and adequate com-
ponents.

4.1 Introduction

It is very difficult for developers to build and deploy backbone ser-
vices using data models with its data manipulations, since it needs
deep knowledge, skills, and experience in different technologies and
platforms, such as SQL Database engines, tiers architecture, application
servers, and REST APIs, such these development skills can be intimi-
dating even for seasoned develops. While in parallel, frequent changes
and rapid release cycles in terms of market stress, and so limited time
and resources makes gap between design and implementation phases.
REST APIs development requires much time, and it is not-easy-to-use
and understand. Therefore, development and maintenance for REST
architectural software is a crucial, tedious, and error-prone work, and
requires huge efforts.

In general, prior work adopted the auto code generation approach, but
code generation has a major downsides on software development pro-
cess. While in parallel, most studies still need more empirical studies to
verify effectiveness. In this study, the main goal is the improvement of

40

4.2. Experimental research

productivity, maintainability, and learnability for REST services devel-
opment to be easy-to-used and understand. Efforts will be dedicated to
develop a useful framework to create REST APIs rapidly. Research will
focus on Backbone of applications to build backend REST APIs, where
the detailed objectives as the following:

◦ Reduce development time for backbone services, without impact-
ing flexibility of architecture.

◦ Reduce time to learn and to understand, and simplify the required
human qualifications and experience to build backbone services.

◦ Avoid restrictions for senior developers while using their own cus-
tomized coding and implementations.

◦ Avoid downsides of auto code generators, such as extra efforts,
code rigidity, code overriding, technical complexity, and limited
margins for developers.

After completing literature review and specifying research objectives, as
mentioned above, and in the next stage, the approach will be applied
through developing a dedicated software framework that called RAAG
for Rapid REST APIs Auto Generation, it can be used to a proof the
concept of our approach by using empirical controlled experiment, as
shown in Figure 4.1. But for the last two objectives that consider certain
way of software design, these objectives will be examined by using a
survey in a brief questionnaire.

Figure 4.1: Main phases of research methodology.

4.2 Experimental research

Experiments assist us to directly compare interested conditions, in this
experiment, it will be RAAG Framework productivity, and how RAAG
is easy to be used to create REST APIs. Conditions used to mitigate
experiment bias or error risks to the minimum, the variable of used
framework have to be controlled to obtain better indication about devel-
opment time causation over RAAG framework or over other equivalent

41

4.3. Experiment design

framework, and also it will indicate how much it is easy to be used and
understood. Experiments consist of three components: conditions, units,
and methodology [40, 49]. Conditions will be discussed later as per inde-
pendent variables, where participants and instruments form the units of
this experiment, and methodology will based on generated hypotheses.

Number of variables and values is essential to adopt appropriate ex-
perimental methods, for instance one-level design is proper for one in-
dependent variable, but for two or more, factorial design is the best
method. And so, one-level design is the appropriate method for our
defined variable “Used Framework”. Number of conditions may lead
to use between-group or within-group design. In between-group, each
group of participants corresponds to one condition, but in within-group,
one group corresponds to whole experiment [40].

In this experiment, there is one single independent variable, thereby ba-
sic one-level is the appropriate design. As mentioned before, creating
REST services is not an easy task and needs a lot of efforts for each con-
dition, especially for condition of common used frameworks. Therefore,
between-group is the adopted method to avoid fatigue, and learnability,
and also to make more control over the effect of variable, where each
group will be exposed by one condition tasks.

4.3 Experiment design

To decide design specifications of this experiment, hypotheses should
be identified precisely, and then variables with conditions can be de-
rived from the specified hypotheses, which is essential to proceed in the
experiment design, as followed next.

4.3.1 Hypotheses

Based on the discussed results in literature review, the research hypoth-
esis can be generated to derive variables and conditions. Where number
of conditions equal: variables number x variable values [40]. Research
objectives lead to formulate a certain hypotheses, where the below state-
ments are formulated precisely as a null hypotheses, which used to in-
vestigate impacts of the proposed approach (RAAG framework) on the
development time of REST services:

H1 There is no significant difference in the development time for REST
services when using traditional proposed RAAG framework, or other

42

4.3. Experiment design

approaches.

H2 there is a significant difference between development time (over the
proposed approach) in terms of experience.

Variables

Based on the generated hypotheses, H1 and H2, variables can be defined
clearly to be measured accurately. Measured outcomes for the creation
time of REST services acts as dependent variable. Controlled conditions
of used framework acts as an independent variable.

Independent variables

That refer to change factors or causes on values of dependent variable,
that are independent against a participant’s behavior [49]:

Independent single variables is: Used Framework.

And possible values are: RAAG framework or Different frameworks.

Dependent variables

It refers to the concerned results or effects of experimentation, which
dependents on the performance of participants or status of independent
variables, and used to induce impacts of independent variables changes
on dependent variables, such as efficiency of building REST APIs, and
easy to learn and understand RAAG framework:

Variables: (i) creation Time of REST services, (ii) Easy-to-use Factor.

Conditions

After generating hypotheses and defining independent variables, con-
ditions can be specified. In basic one-level design, possible values of
the single independent variable “Used Framework” determine experi-
ment conditions [40]. So, conditions are: common used frameworks and
RAAG framework.

Between-group is the adopted method for the basic design, in which
each participant corresponds to only one condition, so learnability is
avoided, since user will not learn from prior task conditions, so it is
cleaner [40]. Moreover, participants avoid tiredness or fatigue since each
one have to complete tasks of only one condition on the contrary of

43

4.3. Experiment design

Table 4.1: Cross-Group Design.

Group Used Framework Tasks

1 RAAG Framework Create (Student & Parent) REST
APIs

2 Different
Frameworks

Create (Student & Parent) REST
APIs

within-group design. But in between-group, individual differences may
variant results and then noise evaluation of group. Noise can be miti-
gated by increasing number of members in the groups, but it leads to
large size of sample, which is negligible in this experiment [40]. Hence,
as per the mentioned facts above, groups will be designed as illustrated
in Table 4.1.

4.3.2 Procedure

After identifying the hypotheses of research, and specifying its design,
we should sufficiently prepare for the experiment to mitigate risks and
avoid obstacles, and then application stage can be started successfully.

◦ Start design of tasks carefully to be adequate and short as much as
possible.

◦ A pilot study will be run to find snags and missing issues by test-
ing the design pre-configure required IDEs and database schema.

◦ Implement training material as five-minute movie, short document,
and test procedure.

◦ Setup study instruments in the lab using VM ware to encapsulate
all requirements in isolated environment with a complete similar-
ity, such as OS, installed databases, and IDEs.

◦ Select and recruit participants carefully, and schedule the session.

◦ Start session by running the prepared movie and then monitor
progress to record spent times using stop watch instrument.

◦ Analyze collected data by using MS-Excel to report the results, as
discussed in the next Section 4.4 and Section 4.5.

44

4.4. Data Collection

4.4 Data Collection

Experimenter will measure spent time for each participant, using stop
watch instrument, where tasks are the same for all of them, but over two
different frameworks, so experimenter will record all these information
as per each participant.

4.5 Data Analysis

MS-Excel will be used to analyze result, which is adequate tool for such
analysis. Analysis will focus on the causal relations between required
time to create REST services and the independent variable, which should
be the used framework to create REST services.

To verify realization of first two research objectives, quantitative analysis
will be used on the gathered data from the experiment to investigate the
effect of using RAAG framework on the REST services creation time,
and the same time can be used to indicate easy of learn and use for
RAAG framework. Analysis for survey results will be used to verify
achievement of design objectives, as per the last two objectives.

45

Chapter 5

Implementation

This chapter discusses the empirical implementations, we firstly discuss
framework specification, since RAAG framework is the developed plat-
form that used to execute all other empirical exercises. After describing
the framework, we give an overview about the reference application as
a pilot example, which demonstrates framework capabilities to enable
junior developers to build a difficult applications with short time and
high quality of code.

5.1 Developed solution - RAAG Framework

REST APIs Automatic Generation framework reduces the required man-
ual coding and provides high quality of design and implementation.
Major value added features were considered in this framework, which
will be discussed in the next sections. FW have utilized common tech-
nologies and platforms, it combined them into one frame as a platform
for back-end developers. And on the other hand, the development en-
vironment enabled using different useful and helpful tools as plugins,
these tools facilitate the integration with data sources and models to
simplify repetitive coding. Implemented diagram of the architecture
and design visualized all the built components and employed aspects in
the developed framework, as followed next.

5.1.1 Value added features

Introduced solution is applied through an integrated framework, which
combines most needed components and aspects into one place as infras-

46

5.1. Developed solution - RAAG Framework

tructure platform. Architecture built in a specific way and in a loosely
coupled with certain technologies to achieve and realize below features
and advantages:

◦ Compliance with Parallel Agile (PA) approach for parallel develop-
ment among teams [14], which facilitates allocation of teamwork
tasks into sprints.

◦ Compatibility with new trends of technologies and service plat-
forms, such as Microservices architecture, Cloud services, NoSQL
and Big Data platforms, where REST became the key component
that providing an infrastructure for IoT world.

◦ Centralism in this FW enables easy control to manage logging, se-
curity, and permissions.

◦ Realized unification enables architects to build and integrate unit
test and also to automate testing on back-end level.

◦ Reusability for work of others in easy way, where the FW already
integrated the most common and useful utilities and frameworks.

◦ Unify code style that may be implemented by different developers’
levels, which makes the codes easy to read and understand, since
the applied abstraction technique coped complexity [59], whereas
automation is the most defective method to boost productivity
with quality.

◦ Minimize efforts to learn and simplify required experience and
qualification to use complex frameworks, where novice developers
can utilize these platforms indirectly over this FW.

◦ Provide enough margin for senior developers to innovate their
techniques and tools while gain a complete benefit and support
from RAAG framework in the same time and in parallel without
any conflicts or restrictions.

5.1.2 Technologies and platforms

RAAG framework reused the following platforms and technologies in
a unified and decoupled way, framework integrated whole packages of
them as one infrastructure layer, and plugins of them were integrated in
the used STS Eclipse IDE:

47

5.1. Developed solution - RAAG Framework

Spring Framework

It provides a platform to develop Java applications, and handles the
below infrastructure as abstract to focus development efforts on the
application layer. Spring enables building apps from POJOs as J2SE
and J2EE models. For example, method can be implemented to execute
in a database transaction without need to deal transaction APIs explic-
itly, and also invoke procedure without need to deal with remote APIs,
which is same for JMX and JMS APIs [38].

Hibernate ORM

Hibernate is a solution to map Java object with relational data entity,
where working on OO and DB is a time-consuming due to mismatch
between object’s data versus relational entity. Hibernate maps classes
to tables, and covers Java attributes’ types to SQL data types. In addi-
tion, it significantly facilitates CRUD operations and eliminate manual
work.And so, Hibernate is useful for object-oriented domain models,
which encapsulates SQL and translates result into objects’ graph instead
of tabular [4].

Jackson Object Mapper

It is a solid library that serialize/de-serialize JSON to Java. Where Object
Mapper responses JSON objects by using annotations. Hence it can
parse string or stream into JSON, and vise versa create Java object from
JSON [7, 8].

Springsource Tool Suite (STS)

It is a preinstalled plugins on Eclipse IDE to provide supplementary
features for Spring developers, such as validators, visual editors, and
dashboards [3]. Where the main STS plugin is Spring IDE that provides
Spring tooling features, STS is already configured with other helpful
plugins, such as Maven, JUnit, Data Tools Platform (DTP), Web Tools
Platform (WTP), and AspectJ Development Tools.

Eclipse DTP (Data Tools Platform)

It gives developers standard tools to interact any SQL database over
Eclipse IDE. DTP is a vast domain by which developers can easily in-
tegrate database in the environment to manage data, after making the

48

5.1. Developed solution - RAAG Framework

connection, developer can explore data source, make and debug changes
through CLI or GUI actions. Therefore, it bridges gap between relational
and object, or other structures [2].

JBoss Hibernate Tools

It is an umbrella that supports JBoss and related technologies for a group
of plugins inside Eclipse, such as Hibernate, JPA, Apache Camel, Maven,
(X)HTML, CDI, JSF, JBoss AS, OpenShift, Docker, Red Hat JBoss Fuse,
and more [2], where RAAG framework employs JPA tool [9].

Apache Maven

It is a project management tool to uniform building of Java based projects.
Maven sets a convention over the configurations through a project ob-
ject model (POM.XML file) for each project, which holds all project’s
information. Maven has a plugin for Eclipse IDE. It is used to manage
different utilized tools and frameworks, which allows developers to un-
derstand the complete state of a development progress in the shortest
time, where it simplifies build process to uniform built system, and in-
troduces quality project information with guidelines for best practices
in development [11].

5.1.3 Integration

In this solution, Spring framework features are integrated into Eclipse
IDE through STS, hence developer can simply use Spring feature and fo-
cus on application logic. DTP is also plugged into IDE to integrate SQL
database, and then it facilitates data management from the environment
side. Moreover, DTP offers a database connection for JPA tool to fetch
schema meta data for the intended entities. Where JPA tool is a JBoss
Hibernate Tool that used to generate data model from database entities,
then model can be used from both sides, Hibernate ORM and Spring
business logic. On the other hand, Jackson object mapper used over
REST APIs to marshal and de-marshal data Model into JSON syntax
object.

5.1.4 Architecture and design

One of the most important phases in software development life cycle is
the design, it impacts other phases, and it influences support alongside

49

5.1. Developed solution - RAAG Framework

with maintainability, quality, and performance. In usual, design quality
depends on developer experience and expertise only, so this framework
applies principle, standards, and patterns, which can improve the re-
usability, maintainability, and scalability.

Figure 5.1: Framework Architecture (RAAG).

Framework architecture consists of three main aspects that are; data
source, core framework, and data services with their model. In general,
the three aspects are based on Spring Framework version 5 as a platform
that abstract all infrastructure implementations, as shown in figure 5.1.

Data source aspect is the responsible of handling data from its marts,
this part is based on Object relational Mapping framework to parse and
marshal data entities into Java objects, where Hibernate framework is

50

5.1. Developed solution - RAAG Framework

used to manage these roles. ORM functionality and database engine
can be replaced with any equivalent tools, or it may be developed from
scratch if needed. Therefore, data source is bridged with core aspect
in a loosely coupled mode, which realize an extreme flexibility, where
dependency injection DI of Spring is applied as aspect oriented architec-
ture.

Core aspect is based on four layers architecture, layers ensure separa-
tion of concerns into data access, business logic, work flow, and web
APIs. Each layer services the above one, and it is separated with Spring
dependency injection DI to enable customization and replacement with
different layer or layers.

On top of web APIs tier, module of ”data services and model” is de-
signed to handle common web APIs over each entity model, then it
can expose common APIs as-is, or override, customize, or expand them
based on system and software requirements. This architecture enables
to abstract database CRUD operations at least (Create, Retrieve, Update,
and Delete), which already done, and more common operations can be
implemented and encapsulated as common APIs in web tier.

Therefore, this architecture can speed REST APIs generation and reduce
their development time and required efforts. Moreover, it achieves many
constraints and non-functional requirements, such as flexibility, Agility,
simplicity, Reusability, maintainability, and other more values that men-
tioned in section 5.1.1. Efficiency of this methodology and its impact on
the process of software life-cycle have been investigated and discussed,
as shown in section 6.3 and section 7.2.

In general, the introduced framework is aligned with SOLID principles
[44, 16] that lead to high quality of software according to the empir-
ical validation of Singh and Hassan [65]. The principle of Single Re-
sponsibility SRP is applied to limit responsibilities inside each layer to
coherence interactions and to cancel tightly coupled relations. Open
Closed OCP is used to mitigate tied relations between extended classes
as REST services and their based class in web APIs layer, where the
abstract code is closed to intact designed coherence. Liskov Substitution
LSP is commonly utilized, especially in data model, where the entity
interface exposes wanted methods only. Core layers are segregated ac-
cording to Interface Segregation ISP principle to ensure proper inheritance
structure and polymorphism, which later avoids unmatched interaction
between incompatible objects. Dependency Inversion DIP is used to mini-
mize inter-dependencies between related aspects, such as data resource,

51

5.2. Proposed approach

data-access, and business logic, which can be injected on the instantiate
time.

5.2 Proposed approach

According to the developed solution, as discussed in the prior sections,
developers can build or maintain REST web services in a simple and
professional manor without impacting code quality. The following steps
summarize the recommended procedure to build REST APIs in a short
time:

1. Setup the environment as mentioned in section 5.1.2 over STS
Eclipse IDE while using Maven project.

2. Integrate and configure the auxiliary tools and plugins to support
the prepared IDE, which required to be done for one time only, as
discussed in the integration section 5.1.3, where ORM Hibernate
support DB interactions and data tool with JBoss Hibernate tools
help to generate data model.

3. Generate model source code by using the integrated tools in IDE,
where it can be used to connect with database and then generate
model classes for the selected tables.

4. Implement abstract methods in data model to be compatible and
plug-able into RAAG framework, these methods are empty or very
simple in default, as shown in appendix C, section C.2.1.

5. Extend Web APIs layer, which discussed in section 5.1.4, where
SpringWebAPI can be extended to create the required service based
on certain model object/s, default empty service class inherits all
the common predefined APIs, such as CRUD and search APIs, as
shown in section C.2.2.

6. Finally, implementer can customize or maintain the created service
by adding to the existing functionality or overriding the predefined
APIs, which also can be expanded inside framework to include an
other common functions.

5.3 Objectives realization

In this section, would like to pay attention for the realized and achieved
objectives, using RAAG framework implicitly fulfills the following objec-

52

5.4. Reference application

tives of this research:

◦ Avoid restrictions for senior developers: based on this architecture,
seniors can expand the already predefined REST APIs (CRUD), or
they may replace them, and simultaneously they can utilize RAAG
framework from capabilities, furthermore seniors can customize or
replace complete layers on basis of AOP.

◦ Avoid downsides of auto code generators: RAAG employs general pro-
gramming for REST services without any code generation, where
model code is trivial and shouldn’t include any logic, it can be
accomplished for only one time regardless of approach.

◦ Enable loosely couple for other frameworks or replace them smoothly:
as mentioned above in this section, a complete aspects can be re-
placed, such as data source, and also backbone tools, frameworks,
or platforms can be replaced without any impact on the built APIs,
such as Spring.

5.4 Reference application

In this section, introduced an overview about the reference application,
where its back-end was developed over RAAG Framework, this project
is supported by EASY SOLUTIONS INFORMATION TECHNOLOGY
company [5]. Overview will focus on four perspectives; structure of
data services with model, complexity of user interaction, code quality,
and the required experience for implementation.

The structure of data model is not a flat level, but it includes too many
relations with nested levels (inheritance) and different types. Where the
applied relations are one-to-one, many-to-many, one-to-many, many-to-
one. As usual, model consists of entities that include attributes with
their setters and getters, which is trivial code and may be generated
automatically by JPA JBoss Tool, as discussed in section 5.1.3. Although
of complex model, design implementation for REST APIs services was
very simple, as shown in figure 5.2.

From the perspective of user interaction, application is computerized to
manage relationship between students, teachers, and parents. Therefore,
school management system should allow students to view their grades,
attendance, classes, and interact with their teachers and vice versa. Fur-
thermore, parents allowed to keep track with their children’s grades,
behavior, and financial records. All the mentioned above confirms that

53

5.4. Reference application

Figure 5.2: Class diagram for reference application.

is not an easy application, as shown in figure 5.3, where screenshots
spirit that developing of back-end requires certain level of experience to
be implemented.

For required experience, although of the reported difficulty in the sys-
tem requirements, a fresh engineer have implemented all the back-end
REST APIs for the application, he was supported with a brief recommen-
dations only. Meanwhile, design of the implemented APIs is aligned
with all essential and SOLID principles [44], as discussed in section 5.1.4.
Thereby, design treats layered architecture, high coherence with low cou-
pling, batched transactions, and concurrency modes. In addition, code
seems very easy and simple, which indicates an excellent impact by us-
ing the proposed approach.

For code quality, it is based on packages of RAAG framework, so devel-
oped REST code will gain all characteristics of FW. In particular, code
metrics [18] shows that most classes of REST services are default with-
out any customization, these only include two empty methods. Hence,
85% of REST source code services are empty (13 services out of 15 ones),
which means a very low complexity in REST code, as shown figure 5.4.

54

5.4. Reference application

Figure 5.3: Screenshots for reference application.

Figure 5.4: Code metrics for reference application.

55

Chapter 6

Evaluation

In this chapter, evaluation is discussed over the implemented framework,
while using two empirical approach, survey and experiment. An intro-
ductory training material for the involved participants will be described,
especially for who use the proposed approach over the implemented
framework, material is focused around an illustrative example over the
framework, which presented in a movie to learn experimentees. Simi-
lar to the learning example, the assignment of experiment is described
to demonstrate a comprehensive scenarios and strong conduction with
research objectives.

6.1 Model example as learning material

This section represents the prepared training material for participants
of the experiment, learn by example is the followed approach. The
selected example is a vehicle model that consists of Vehicle, Car, Part,
Factory, Country, and City entities. Model example is designed in a cer-
tain way to cover all possible relations between entities, where making
a comprehensive awareness for participants enables them to implement
any exercise. For example, Vehicle is a master data entity, which joint
with Car entity as detailed composition in a one-to-one relation, also
Car refers to Part through many-to-many breakdown entity, and so on.
Entity relational diagram illustrates all these relations, as shown in fig-
ure 6.1.

Model and services class design is implemented over the predefined
database entity relational structure, design views mapped objects with
entities and built services over them. From class perspective, Vehicle is

56

6.1. Model example as learning material

Figure 6.1: ER diagram for learning purpose.

a super class for Car child, which contains list of Part objects and vice
versa. Object design structures an integrated REST service for Car and
Part with relevant model, as shown in figure 6.2.

Figure 6.2: Class diagram for learning purpose.

On basis of the discussed example, we have documented diverse types

57

6.2. Model exercise for experiment

of materials to introduce a complete and compliance material with all
learning styles. A shore 15 minutes movie was uploaded on YouTube
[12] to provide fast, parallel, similar, and sustainable material for each
participant. Moreover, Java source code and Java API documentations
were packaged and provided for participants.

6.2 Model exercise for experiment

According to experiment design in section 4.3, specific exercise should
be designed as a comparable task between the two groups of partici-
pants, the prerequisite knowledge should already be transferred to them
through the prepared material, as discussed in the last section 6.1. The
designed exercise is a student model that consists of a Person, Student,
Parent, Address, Country, and City entities. Model exercise is structured
in a specific way to cover all possible relations between entities, building
a comprehensive exercise is a very important task to measure valuable
indicators between groups. For instance, Student is a detailed data entity,
which joint with Person entity as master composition in a one-to-one re-
lation, also Student refers to Parent through many-to-many breakdown
entity, and so on. Entity relational diagram demonstrates these relations,
as shown in figure 6.3.

Figure 6.3: ER diagram for experiment exercise.

Experiment model with relevant services is designed over the prede-
fined database structure while considering relations, class design views
mapped objects with entities and built services. From class perspective,
Person is a super class for Student child, which contains list of Parent

58

6.3. Survey

objects and vice versa. Object design shapes an integrated REST services
for Student and Parent with their relevant model, as shown in figure 6.2.

Figure 6.4: Class diagram for experiment exercise.

According to the discussed experiment design, all required materials are
packaged and documented for both groups. In addition to the learning
materials that discussed in section 6.1, we provided model ER diagram
for participants in both groups, and give a survey (see section A.2) for
the first group. Furthermore, database dump was introduced for partici-
pants in the second group (as SQL script) who use common approaches,
such as Spring Boot, Apache Camel, Python, ... etc.

Design considered reasonable time to implement the experiment, a trial
test was done to ensure design validity and to guarantee environment
readiness, where the test procedures were also prepared. Environment
setup is encapsulated in VMware instance to keep similarity and porta-
bility for whole platforms with setting, such as OS, DB, and IDE with
plugins.

6.3 Survey

A survey was introduced for the experimentees in first group, those who
obtained training material about building REST services, as mentioned

59

6.4. Experiment

in section 6.1. Questions of survey were designed to explore opinions
around three main topics; sufficiency of learning material, reliability of
experiment, and framework quality. Around the first topic, opinions
of the involved implementers was very useful to indicate achievement
range for the below objective:

Objective: Reduce time to learn and to understand, and simplify the required
human qualifications and experience to build backbone services.

Gathering opinions around the other two topics was a supportive indica-
tor, these opinions used to demonstrate correspondence between exper-
imentees’ expectations and design assumptions, which assumes objec-
tives realization when applying the proposed architecture, as discussed
in section 5.3.

Figure 6.5: Likert scale options.

Table 6.1 illustrates the statistical information of the introduced survey,
which have been analyzed based on Likert rating scale, where Likert
rating scale applied five options, which included a neutral option [41,
10], as shown in figure 6.5. Data was gathered from seven participants
after finishing their experiment over the proposed approach, where the
following sections will analyze and discuss survey statistics.

6.4 Experiment

The objective of the designed experiment is to investigate the perfor-
mance of building REST services, where the development is based on the
proposed approach, and over the presented RAAG framework, which
mentioned in section 5.1. This experiment is part of a larger investi-
gation, since impacts on development life-cycle may be examined from
different perspectives over the proposed approach, such as productivity,
flexibility, maintainability, compatibility, ... etc. Several empirical experi-
ments may be done, so a survey was implemented to interrogate around
other perspectives, as discussed in section 6.3.

The experiment was executed though two weeks, a specific exercise was
assigned for all participants in each group, as discussed in section 6.2.
The collected data was recorded into excel sheets. A prepared survey

60

6.4. Experiment

Table 6.1: Survey Statistics.

Category Question Mean SD

Sufficiency
of Training
Material

The training session (such as demonstrative
video and docs) was clear.

4.14 0.69

The information in the training video was
helpful to complete the tasks and experiment.

4.57 0.53

I needed more help to complete the tasks
during the experiment.

2.14 .069

Average 3.62 0.64

Experiment
Reliability

The required exercise included real-world
scenarios.

4.43 0.53

Framework
Perfor-
mance and
Quality

I am satisfied with how it was easy to use this
framework to build REST API.

4.86 0.37

This framework minimized usual efforts to
build REST APIs.

4.71 0.48

This framework reduced the time needed to
create REST APIs.

4.57 0.89

Making changes to the generated REST APIs
required little time.

4 1

I could fix problems easily and quickly in this
framework.

4.14 0.69

I believe that proposed framework can
improve productivity.

4.7 0.48

This framework has all the functions and
capabilities that I expect to build REST APIs.

4 0.58

Average 4.43 0.63

was introduced at the end of each experiment, survey designed to in-
terrogate participant around the introduced practice and around the fol-
lowed approach. Most experiments were run within working hours in
an enterprise environment, while others were run outside an enterprise.
Therefore, coordination within an available time slots had spent two
weeks to execute experiments.

6.4.1 Participants

Before starting the experiment, developers who are willing to share in
the exercise have to be found. Actually, it’s very important to choose

61

6.4. Experiment

developers who are motivated and willing to share in whole experiment,
thereby it is preferable to select developers whose work is similar to the
field of experiment. Participants were allocated into two groups, each
group includes diverse individuals in the years of experience, following
sections will discuss setup of groups.

6.4.2 First group

First group involved seven participants, group will use the proposed
approach to build the required Student model and REST web service on
top of the specified model, which is exactly according to the experiment
exercise 6.2. Three guys of the group are fresh graduate engineers, they
work as trainee since few weeks in ASAL Technologies company [1]. An
other three engineers have long experience, more five years, where most
of their experience is relevant to the exercise. The last developer has
one year of relevant experience, for more information about participants
refer the detailed in table A.2.

6.4.3 Second group

Second group involved four experience engineers, this group considered
different approaches, where each participant use his approach according
to his experience. Database dump was provided for each one, dump
precisely leads to structure the intended model for Student and the REST
web service on top of that model, just like the exercise of a first group.
Hence similar test procedure can be used to avoid threats of validity.
Two developers of this group are experts in their followed approaches,
one of them used Spring Boot framework and the other used CherryPy
with Alchemy ORM in the environment of ASAL Technologies company
[1]. The other two engineers have mid experience, the first has two
years in ASAL. The last participant has one year experience, further
information about participants is detailed in table A.3.

62

Chapter 7

Results and discussion

In this chapter, results were discussed and analyzed in depth, based
on the introduced evaluation in chapter 6, results of the survey and
experiment will be figured to deduce and illustrate trends, and also
to overview statistical data for different approaches, where hypothe-
ses have been tested to a proof the contribution of proposed approach.
Moreover, threats to validity are explored to describe the considered
actions to mitigate negative impacts.

7.1 Survey Results

Following sections will discuss survey results, which concentrated on
three main topic; learning material, experiment reliability, and frame-
work quality.

7.1.1 Sufficiency of learning material

As illustrated in figure 7.1, There is a high values of responds around
learning material, which indicates a good understanding of proposed
approach and its usability before starting the experiment, as shown
through Mean (4.14), and through standard deviation (SD=0.69) of be-
low question:

Q1: The training session (such as demonstrative video and docs) was clear.

As well as second survey question, the Mean = 4.57, and SD = 0.53,
which is:

63

7.1. Survey Results

Q2: The information in the training video was helpful to complete the tasks
and experiment.

For third question, the results of answers are (Mean =2.14 and SD=
0.69), which confirm the understanding of learning material, it shows
the intermediate percentage of seeking help from the participants who
performed the experiment, this degradation mostly refers to the high
complexity of model exercise, since model was designed to include all
types of relations to simulate real-word scenarios:

Q3: I needed more help to complete the tasks during the experiment.

Figure 7.1: Sufficiency of learning material.

7.1.2 Reliability of experiment

The comprehensiveness of the proposed solution can illustrated after
implementing the experiment that simulates real world scenarios, as
shown in figure 7.2, where results of assessment are (Mean =4.43, and
SD=0.53) for the fourth question.

Q4: The required exercise included real-world scenarios.

Figure 7.2: Reliability of experiment.

64

7.1. Survey Results

7.1.3 Framework quality

Figure 7.3 and figure 7.4 demonstrate results of participants’ assessment
for framework performance and quality that based on study approach,
where most ranges of respondents are between 5 to 4 out of 5, which
means high participants satisfaction.

Figure 7.3: Framework quality.

The most of ”agree” responses appear in questions 5, 7, and 10, as shown
in table 6.1 with Means (4.86, 4.57, 4.7) and SD (0.37, 0.89, 0.48), respec-
tively. Hence, responses indicate that the developed framework is easy
to use, and it reduced the required time and efforts for REST develop-
ment, which leads to improve software productivity.

Whereas the lowest agreement was with the question eight:

Q8: Making changes to the generated REST APIs required little time.

However, it’s a good evaluation rate, Mean = 4 and SD = 1.0, where
some of participants are fresh graduate, and work as a trainee on front-
end aspect.

Figure 7.4: Framework quality.

65

7.2. Experiment Results

7.2 Experiment Results

7.2.1 Collected data

Data gathered face to face during an interview with experimentees them-
selves, which achieved a complete useful responses. Experimenter recorded
spent time, progress percent, years of experience, number of help re-
quests around model implementation, number of help requests on REST
development, count of REST bugs, count of Model bugs, and the wor-
thy comments. Data is detailed for the two group into table A.2 and
table A.3.

Data visualization demonstrates a significant variance on the required
time between the two groups. Although of high prior experience in
the second group, the mean of spent time is more than twice of the
first group, and also prior experience in first group is not a prerequisite,
where the group involved fresh engineers. Furthermore, data of the first
group shows easiness of learn, where a little impact on the required
time versus many years of experience, which seems as neutral factor in
the first group. For REST development aspect, charts demonstrate zero
help requests with zero bugs, except one brief help for two of the fresh
engineers, as shown in figure 7.5.

Figure 7.5: (A) Experiment results for G1 and (B) Experiment results
for G2.

7.2.2 Analysis

Results analysis will focus on the impact of used approach on develop-
ment time, and so causal relation should be investigated between inde-
pendent and dependent variables, as used approach and time creation

66

7.2. Experiment Results

for REST services, respectively. Quantitative analysis is used to realize
and confirm below research objectives:

◦ Reduce development time for backbone services, without impacting archi-
tecture, flexibility, and maintainability.

◦ Reduce time to learn and to understand, which simplify the required hu-
man qualifications and experience to build backbone services.

Above mentioned objectives lead to formulate two or more hypotheses,
which is very important to know and state what have to be evaluated
in this experiment [70]. Here, it is determined to focus on the below
hypotheses, informally:

◦ H1: Developers from first group have used the proposed approach, and
hence it is expected that they have a faster productivity than their peers
from other group.

◦ H1: there is no significant difference between development time or raised
bugs (over the proposed approach) in terms of experience.

Based on the above informal hypotheses’ statement, it is possible to for-
mulate the hypotheses and define the required measures for evaluation,
as shown below:

◦ Null Hypothesis (H0): there is no significant difference between REST
development time in terms of used approach. (Spent time is independent
of used approach)
Alternative Hypothesis (H1): REST development time changes with
used approach.
Required Measures: Spent time and followed approach.

◦ Null Hypothesis (H0): there is a significant difference between develop-
ment time or raised bugs (over the proposed approach) in terms of experi-
ence. (Spent time and raised bugs depend on experience for first group)
Alternative Hypothesis (H1): REST development time and raised bugs
are independent of experience for the first group.
Required Measures: Spent time, raised bugs, and years of experience.

We will use descriptive statistics to visualize collected data, and then
analyze results, as shown in figure 7.7, and figure 7.8.

Figure 7.6 shows the spent development time for the two study groups,
as per each participant. From figure 7.6, it is obvious that developers
from first group (G1) seem to spend a shorter period. Moreover, it is

67

7.2. Experiment Results

Figure 7.6: (A) Spent time in G1 vs. G2 and (B) Time difference
calculations.

noticeable that the distribution variation seems to be larger among the
developers from the second group (G2). In total, there are seven G1 par-
ticipants and four in G2. Where the mean time value for G1 developers
is 49.3 minutes with a standard deviation of 17.9, and for the G2 mean
time is 174.8 minutes with a standard deviation of 63.8. Huge mean’s
variance between G1 and G2 inspires that there is more than two times
improvement on the productivity of G1. Thus, it is possible to investi-
gate the difference statistically in the first hypothesis test.

On the contrary of time results, years of prior experience is not a prereq-
uisite in first group, where mean years of experience in G1 is 3.9 Years,
and 5.5 Years for second group. Results means that first group superior
with less time and less prior experience too.

Figure 7.7: (A) Spent time in G1.1 vs. G2.1 and (B) Time difference
calculations.

Further, the first group (G1) was divided into two sub-groups, G1.1 and
G1.2. The sub-group G1.1 has the 4 experts participants, while G1.2

68

7.2. Experiment Results

Table 7.1: Experiment descriptive statistics.

Variable Description Fresh Experience

Participants
Count 3 4
Experience
Mean (Years)

0 6.75

Spent Time
Mean 64.67 37.75
SD 14.29 9.32

Model Bug
Mean 2.00 1.00
SD 1.00 0.82

REST Bug
Mean 0.00 0.00
SD 0.00 0.00

has 3 remaining novice participants. It can be seen from Figure 7.5
that sub-groups G1.1 and G1.2 have high difference in average years of
experience. From table 7.1, and although of huge difference between
means of experience (0 against to 6.75 Years), it can be seen that both
sub-groups almost took same time for development during the session.
figure 7.7 and figure 7.8 demonstrate the low difference in spent time
between expert and novice participants. When looking into mean values
of spent time and model bugs, both variables seem to be a little tendency
according to heavy development duties in software, which indicates that
no significant difference in effort to learn and understand in terms of
experience. There is no extreme large deviations, and somehow both
are closed together. Actually, data confirms that no REST bugs found
and no request for help to implement REST APIs either from experts or
fresh engineers, absolutely.

While the presented descriptive statistics have introduced an excellent
insight into data, both variables tends toward what can be expected
from the hypothesis testing, as the following.

Hypothesis Testing

Both hypotheses were evaluated by using a t-test, MS Excel was used
for the statistical computing [6]. For used approach vs. productivity,
results of two-tailed for unpaired t-test show (p-value = 0.0309 < 0.05),
as shown in table 7.6. Therefore, we can conclude that the no significant
difference hypothesis (H0) is rejected, which means that there is a signif-

69

7.3. Threats to Validity

Figure 7.8: (A) Raised model bugs in G1.1 vs. G2.1 and (B) Bugs
difference calculations.

icant difference in productivity (with less spent time) for developers of
first group who used the proposed approach. Since p-value is less than
5% (0.05), results of spent time are highly significant.

For spent time vs. experience, results of two-tailed for unpaired t-test
confirm that (p-value = 0.0657 > 0.05), as shown in table 7.7. And also
for bugs vs. experience, t-test results illustrate that (p-value = 0.2302
> 0.05), as shown in table 7.8. Based on both results, we can conclude
that the significant difference hypothesis (H0) is rejected, which means
that there is no significant difference in the spent time and raised bugs
in terms of experience in first group. Hence, new approach is easy to
use either from experts or fresh graduate. Since p-value is more than
5% (0.05), results of spent time and also raised bugs are not significantly
different.

7.3 Threats to Validity

In this section, experiment settings will be discussed to consider signifi-
cant factors that can achieve the validity of results, and to avoid mistakes
that may significantly reduce reliability of results, at least validity risk
can be mitigated to the minimums. Based on the experiment’s goal, sev-
eral types of validity can be involved. According to the adopted empir-
ical method, four types of validity are analyzed [70]: internal, external,
construct, and conclusion validity.

In the internal validity, concern is focused on the actual study by avoid-
ing matters that may influence the independent variables, and hence
impact causal relationship between treatment and outcome, without at-
tention from researchers. In this experiment, two threats are belong to

70

7.3. Threats to Validity

internal validity, whose are developers selection and used instrumenta-
tion. Developers were carefully involved to be familiar in database and
web services development, and in the same time to be diverse in their
experience. To avoid fatigue, each participant was only allocated to a
single task in a single treatment, and most of them were strongly moti-
vated through their employers to be serious enough, especially in ASAL
Technologies [1]. While in the second group, competition spirit was the
common attitude to confirm superiority of their own approaches.

For instrumentation, concern is to avoid impacts that may refer to used
artifacts while executing the experiment. Therefore, used artifacts, such
as tasks and learning documents, were designed to be short and compre-
hensive as much as adequate. Development environment was optimized
over a VMware instance, where the VM encapsulated a similar precon-
figured IDE for the first group, and also prepared a database dump for
the second group, which avoids structural mistakes and keeps similar
data for test procedure. Moreover, ”HP CORE i7” Lab PCs were selected
to be fast and convenient for most users, but using VMware impacted ac-
tual performance, which in terms increased the spent time in first group,
and even so some developers suffered from inconvenience of IO periph-
erals for PCs. For Lab environment, it was selected and accommodated
to be suitable as much as possible.

External validity concerns with results generalization to other environ-
ments rather than the relevant one of experiment. The most dangerous
threat to external validity is to limit the involved developers in a certain
sector, or with a specific background experience. And so, this threat is
mitigated by selecting diverse developers, without and with background
experience in a different fields and technologies, which can shape a com-
prehensive sample to generalize results for all other environments. On
the other hand, experiment’s assignment was comprehensively designed
to be realistic and to represent most real-world scenarios.

Construct validity concerns to generalize results of experiment to the
proposed approach (concept or theory) behind the experiment. The ma-
jor threat against construct validity is the limits on the scope of envi-
ronment, which makes the approach applicable for specific technologies
only. And so, this threat is avoided by testing a portable and interoper-
able components during the experiment, where these components can
independently run over different platforms with a full compatibility in
a loosely coupled and dependency injection mode. For instance, de-
pendency of the tested data-source aspect was injected to certain ORM,

71

7.3. Threats to Validity

while it can be inversion-ed to any other ORM, or may to object oriented
database type, meanwhile tested ORM (Hibernate) can support all the
common DB engines. Conceptually, the tested approach is designed to
be applied over any different technology or platform.

Finally, conclusion validity concerns with results analysis from statisti-
cal perspective, which confirms the relationship between treatment and
outcome to draw a correct conclusion. In this experiment, most com-
mon techniques are used, such as means, SD, and t-test, which are solid
enough against violations of their hypothesis. the main threat in this
level of validity is the low number of samples, which may impact the
capability to reveal data patterns. Therefor, more samples were taken
over different technologies to mitigate this threat, and to draw accurate
trends. Meanwhile, participants were enrolled carefully, with precise
follow up and supervision to ensure data quality.

72

Chapter 8

Conclusions

In this chapter, work results have been summarized and concluded.
Goals were highlighted with a completed objectives, while difficulties
and limitations were explored and addressed for future work.

8.1 Summary

In this research, study focused on the field area of REST API auto gener-
ation. In prior work, a 54 studies were the total of results that retrieved
by the search process on different online libraries and databases, these
results were analyzed and filtered through three major stages. The total
final involved articles were 19 studies, these were mapped into the iden-
tified classification scheme of this study, and on basis of a predefined
criteria to include or exclude prior studies.

The identified classification addressed studies based on the applied ap-
proach, which includes five categories: guidance, EMF based, model
driven with code generation, RDF ontology model based, and OpenAPI
model based approach. In each category, a brief discussion was done
around the applied techniques or methods for each study from different
perspectives, such as research approach, addressed problem, proposed
contribution, hypothesis, employed methodology, and recommended fu-
ture work.

In prior work, review shows most studies that required more verification
by applying validation approach, which will confirm the scientific value
for these studies to be considered in the real development environments.
Secondly, according to the statistics, this field of research needs more

73

8.1. Summary

Table 8.1: Research approach facets.

Research Approach Number of studies

Evaluation 10
Experience papers 4
Validation 5

Figure 8.1: Contribution facets.

experience studies by experts. Moreover, most studies used the code
generation approach, which cause major impacts on the development
process as discussed, and the others imply manual work with a valid di-
rections. Auto code generation was the most adopted approaches, which
negatively impacts development process for software products, down-
sides refer to code rigidity, losing customized code, huge initial efforts,
technical complexity, and restrictions for senior developers. Moreover,
most studies still requires further empirical verification, where the eval-
uation of productivity and usability should be confirmed more enough,
as shown in table 8.1 and in figures 8.1 and 8.2.

Proposed approach based over a framework that abstract layers for REST
web APIs, business logic, data access, and model operations. Archi-
tecture is based over using general programming and aspect oriented
programming AOP instead of using code generation, where REST APIs
can be generalized for any correlated models without making repetitive
code. While the dummy code is abstracted behind design patterns, the
introduced approach is verified by a solid empirical proof of concept in

74

8.2. Goals achieved

Figure 8.2: Approach categories among contribution facets.

an excrement and survey.

8.2 Goals achieved

Results shows a significant improvements on the productivity and easy
to use, although of high prior experience in second group, average of
spent time in the second group is more than twice of the first group,
while the prior experience in first group is not a prerequisite. Further-
more, results demonstrate easy to learn in first group, where a little
impact on the required time versus several years of experience.

In this study, improvements impact development life-cycle for REST web
services, while the used approach enables software flexibility, agility
without any restriction on developers margin, where research focus on
applications Backbone to build backend as REST APIs. Research aims to
reduce development time without impacting architecture flexibility and
maintainability, reduce time to learn and to understand, and hence it
simplifies the required human qualifications, and avoids downsides of
auto code generators.

75

8.3. Recommendations

8.3 Recommendations

In this research, developed framework contains most development pro-
cedures of backbone into a centralized controllers, which enables devel-
oped services to plug and play inside framework. And so, system pack-
ages can be developed by several teams in a different places, which pos-
itively impacts compliance with Parallel Agile PA approach [14], where
PA enables parallel development among teams over sprints, which may
impact productivity.

From the perspective of application testing, it is recommended to re-
search around the impact of centralism on building test cases and test
automation. Moreover, future studies can investigate this centralism on
security and permissions implementations on the applications level.

Maintainability is one of the most critical aspects in software develop-
ment processes, where future research may study the impact of this
approach on software changes and maintainability in real projects as a
case studies. Furthermore, practitioners can study impact of developing
a dedicated IDE plugin on the proposed approach, such as a dedicated
Eclipse Developed Plugins.

On the other hand, it is worth to apply the same methodology over dif-
ferent platform, such .NET, Python, and PHP. Researchers can study im-
pacts of the proposed approach over an other different platform, where
impacts can also be compared with results in this research.

76

Appendix A

Tabular Information

In this appendix, all relevant tabular information will be included as a
table with related introductions, so readers can refer to them as per their
needs, information were categorized in sections.

A.1 Related work

Following Table A.1 includes all related articles before applying include
– exclude criteria, as discussed in Section 3.2.4:

Table A.1: Related articles before filtration.

Draft
Section

Paper CONF Year Relevant Comments

Automatic
Code
Generation

Automatic Code Generation with Business
Logic

IEEE 2016 2

Design of Automatic Source Code
Generation

Springer 2018 2

REST-based
Database

Developing a Prototype of REST-based
Database

IEEE 2017 8

Generation
of RESTful
APIs from
Models

Generation of RESTful APIs from Models ACM 2016 9

Model-
Driven
Approach
for REST

A model-driven approach for REST
compliant services

IEEE 2014 8

A Model Driven Approach for the
Development of Semantic RESTful

ACM 2013 8

Continued on next page

77

A.1. Related work

Table A.1 – Continued from previous page
Draft
Section

Paper CONF Year Relevant Comments

Model-driven Code Generation for REST
APIs - Master’s Thesis

Stuttgart 2015 9

A Model-Driven Engineering Approach for
RESTful Web Services

Springer 2017 6

A Model-Driven Tool for the Specification of
REST Microservice

ICIST 2017 6

Model-Oriented Web Service
Implementations Compared to Traditional
Web Services

IEEE 2017 3

A data-model driven web application
development framework

ACM 2014 2

Model-Oriented Web Services IEEE 2016 3

Explication and semantic querying of
enterprise information systems

Springer 2014 5

Example-Driven Web API Specification
Discovery

Springer 2017 8

Extending OpenAPI 3.0 to Build Web
Services from their Specification

WEBIST 2018 8

A Model-Driven Method for Fast Building
Consistent Web Services from
OpenAPI-Compatible Models

Springer 2018 6 First
Online: 01
February
2019

RESTful Web Services Development With a
Model-Driven Engineering Approach

igi-
global.com

2019 9

RESTful
using UML

Structural and Behavioral modeling of
RESTful web service interface using UML

IEEE 2013 7

Modularizing
RESTful
with AOP

Modularizing RESTful Web Service
Management with Aspect Oriented
Programming

IEEE 2015 5

Rapid
Realization
of
Executable
Domain
Models

Rapid Realization of Executable Domain
Models via Automatic Code Generation

IEEE 2017 9

Automatic Code Generation Using Uml To
Xml Schema Transformation

Journal 2014 2

The parallel agile process: Applying parallel
processing techniques to software
engineering

Weliy
Jour-
nal

2018 2

Linked-
Data-Driven
REST

Building Flexible and Reusable Semantic
Web Interfaces

Springer 2016 4

Linked REST APIs: A Middleware for
Semantic REST API Integration

IEEE 2017 8

Continued on next page

78

A.2. Implemented survey

Table A.1 – Continued from previous page
Draft
Section

Paper CONF Year Relevant Comments

Data-as-a-
Service

(Semi)automatic construction of
access-controlled web data services

ACM 2018 9 Canada —
October,
IBM Corp.
Riverton,
NJ, USA
c©2018

ODaaS: Towards the Model-Driven
Engineering of Open Data Applications as
Data Services

IEEE 2014 8

Model-driven development of OData
services: An application to relational
databases

IEEE 2018 8

Semi-automatic Generation of Data-Intensive
APIs

essi.upc.edu2017 7

A Data-driven approach to improve the
process of data-intensive API creation and
evolution

CAiSE 2017 5

APIComposer: Data-Driven Composition of
REST APIs

Springer 2018 6

GraphQL Generating GraphQL-Wrappers for
REST(-like) APIs

Springer 2018 7 Sep, 2018,
IBM
Research
in 2017

A.2 Implemented survey

below figure (Figure A.1) demonstrates the implemented survey to inves-
tigate the satisfaction of participants, and also to explore their opinions
and expectations about the used framework.

A.3 Results of 1st experiment

below figure (Figure A.2) demonstrates collected results in first experi-
ment.

A.4 Results of 2nd experiment

below figure (Figure A.2) demonstrates collected results in second ex-
periment.

79

A.4. Results of 2nd experiment

Figure A.1: Implemented survey.

Figure A.2: Results of 1st experiment.

80

A.4. Results of 2nd experiment

Figure A.3: Results of 2nd experiment.

81

Appendix B

Code Snippets

In this appendix, all relevant code snippets will be included as a fig-
ures, so readers can refer to them as per their needs, snippets have been
categorized in sections.

B.1 Model driven software development

Partial example (Figure B.1) of a RAML API specification file, as dis-
cussed in Section 2.3.7:

Figure B.1: RAML API specification file Example.

OpenAPI 3.0, YAML standard example - 1 (Figure B.2), as discussed in
Section 2.6:

82

B.2. Resource description framework

Figure B.2: YAML standard example – 1.

OpenAPI 3.0, YAML standard example - 2 (Figure B.3), as discussed in
Section 2.6:

Figure B.3: YAML standard example – 2.

B.2 Resource description framework

Description syntax example of RDF (Figure B.4), as discussed in Sec-
tion 2.4:

83

B.2. Resource description framework

Figure B.4: RDF description syntax [46].

Schema syntax example (Figure B.5) of RDF description, as discussed in
Section 2.4:

Figure B.5: RDF schema syntax [46].

84

Appendix C

Source Code

In this appendix, source code of training example and experiment as-
signment were included, so developers can refer to them for more clari-
fication.

C.1 Training example

Training example was prepared to learn participants of experiment, as
discussed in section 6.1.

C.1.1 Model

This section lists model source code for all related entities, as shown in
the following figures: C.1, C.2, C.3, C.5, C.4, and C.6.

C.1.2 Services

This section lists source code of web services for all the related entities,
as shown in the following figures: C.7 and C.8.

C.2 Experiment assignment

Used as assignment to execute for the experiment to measure time and
bugs, as discussed in section 6.2.

85

C.2. Experiment assignment

Figure C.1: City entity model.

C.2.1 Model

This section lists model source code for all related entities, as shown in
the following figures: C.1, C.2, C.9, C.10, C.11, and C.12.

86

C.2. Experiment assignment

Figure C.2: Country entity model.

C.2.2 Services

This section lists source code of web services for all the related entities,
as shown in the following figures: C.13 and C.14.

87

C.2. Experiment assignment

Figure C.3: Factory entity model.

88

C.2. Experiment assignment

Figure C.4: Car entity model.

89

C.2. Experiment assignment

Figure C.5: Part entity model.

90

C.2. Experiment assignment

Figure C.6: Vehicle entity model.

91

C.2. Experiment assignment

Figure C.7: Car web APIs.

Figure C.8: Part web APIs.

92

C.2. Experiment assignment

Figure C.9: Address entity model.

93

C.2. Experiment assignment

Figure C.10: Student entity model.

94

C.2. Experiment assignment

Figure C.11: Parent entity model.

95

C.2. Experiment assignment

Figure C.12: Person entity model.

96

C.2. Experiment assignment

Figure C.13: Student web APIs.

Figure C.14: Parent web APIs.

97

Bibliography

[1] Asal technologies. https://www.asaltech.com/. (Accessed on
01/06/2020).

[2] Eclipse data tools platform (dtp) project — the eclipse foun-
dation. https://www.eclipse.org/datatools/. (Accessed on
12/31/2019).

[3] Eclipse tools for spring - dzone - refcardz. https://dzone.

com/refcardz/eclipse-tools-spring?chapter=1. (Accessed on
12/31/2019).

[4] Hibernate getting started guide. https://docs.jboss.org/

hibernate/orm/5.4/quickstart/html_single/#preface. (Ac-
cessed on 12/31/2019).

[5] Home. http://www.es-pal.com/es/. (Accessed on 01/06/2020).

[6] How to calculate p value in excel (step-by-step tutorial). https:

//spreadsheeto.com/p-value-excel/. (Accessed on 01/10/2020).

[7] Intro to the jackson objectmapper — baeldung. https://www.

baeldung.com/jackson-object-mapper-tutorial. (Accessed on
12/31/2019).

[8] Jackson objectmapper. http://tutorials.jenkov.com/java-json/
jackson-objectmapper.html. (Accessed on 12/31/2019).

[9] Jboss tools - hibernate tools. https://tools.jboss.org/features/
hibernate.html. (Accessed on 01/01/2020).

98

https://www.asaltech.com/
https://www.eclipse.org/datatools/
https://dzone.com/refcardz/eclipse-tools-spring?chapter=1
https://dzone.com/refcardz/eclipse-tools-spring?chapter=1
https://docs.jboss.org/hibernate/orm/5.4/quickstart/html_single/#preface
https://docs.jboss.org/hibernate/orm/5.4/quickstart/html_single/#preface
http://www.es-pal.com/es/
https://spreadsheeto.com/p-value-excel/
https://spreadsheeto.com/p-value-excel/
https://www.baeldung.com/jackson-object-mapper-tutorial
https://www.baeldung.com/jackson-object-mapper-tutorial
http://tutorials.jenkov.com/java-json/jackson-objectmapper.html
http://tutorials.jenkov.com/java-json/jackson-objectmapper.html
https://tools.jboss.org/features/hibernate.html
https://tools.jboss.org/features/hibernate.html

Bibliography

[10] Likert scale questions: Definitions, examples + how to
use them — typeform. https://www.typeform.com/surveys/

likert-scale-questionnaires/. (Accessed on 01/04/2020).

[11] Maven – introduction. https://maven.apache.org/

what-is-maven.html. (Accessed on 12/31/2019).

[12] Rest apis automatic generation - youtube.
https://www.youtube.com/watch?fbclid=

IwAR132OaqQbjIYgJUDuY9ZXjn7e-EybycvqYpb65hBxIU0gqmNx_

nyLxDjJI&edufilter=NULL&feature=youtu.be&v=Fdq15c3T4vk.
(Accessed on 01/04/2020).

[13] Djamel Amar Bensaber and Mimoun Malki. Development of se-
mantic web services: model driven approach. In Proceedings of the
8th international conference on New technologies in distributed systems,
page 40. ACM, 2008.

[14] Ali Asfour, Samer Zain, Norsaremah Salleh, and John Grundy. Ex-
ploring agile mobile app development in industrial contexts: A
qualitative study. International Journal of Technology in Education and
Science, 3(1):29–46, 2019.

[15] John Bailey, David Budgen, Mark Turner, Barbara Kitchenham,
Pearl Brereton, and Stephen Linkman. Evidence relating to object-
oriented software design: A survey. In First International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2007),
pages 482–484. IEEE, 2007.

[16] Bernd Bruegge and Allen H Dutoit. Object–oriented software engi-
neering. using uml, patterns, and java. Learning, 5(6):7, 2009.

[17] Frank Budinsky, David Steinberg, Raymond Ellersick, Timothy J
Grose, and Ed Merks. Eclipse modeling framework: a developer’s guide.
Addison-Wesley Professional, 2004.

[18] Shyam R Chidamber and Chris F Kemerer. A metrics suite for
object oriented design. IEEE Transactions on software engineering,
20(6):476–493, 1994.

[19] Dolors Costal, Carles Farré, Cristina Gómez, Petar Jovanovic, Os-
car Romero, and Jovan Varga. Semi-automatic generation of data-
intensive apis, 2017.

99

https://www.typeform.com/surveys/likert-scale-questionnaires/
https://www.typeform.com/surveys/likert-scale-questionnaires/
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://www.youtube.com/watch?fbclid=IwAR132OaqQbjIYgJUDuY9ZXjn7e-EybycvqYpb65hBxIU0gqmNx_nyLxDjJI&edufilter=NULL&feature=youtu.be&v=Fdq15c3T4vk
https://www.youtube.com/watch?fbclid=IwAR132OaqQbjIYgJUDuY9ZXjn7e-EybycvqYpb65hBxIU0gqmNx_nyLxDjJI&edufilter=NULL&feature=youtu.be&v=Fdq15c3T4vk
https://www.youtube.com/watch?fbclid=IwAR132OaqQbjIYgJUDuY9ZXjn7e-EybycvqYpb65hBxIU0gqmNx_nyLxDjJI&edufilter=NULL&feature=youtu.be&v=Fdq15c3T4vk

Bibliography

[20] Rafael Corveira da Cruz Gonçalves and Isabel Azevedo. RESTful
Web Services Development With a Model-Driven Engineering Approach,
pages 191–228. IGI Global, 2019.

[21] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot.
Apicomposer: Data-driven composition of rest apis. In European
Conference on Service-Oriented and Cloud Computing, pages 161–169.
Springer.

[22] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot.
Example-driven web api specification discovery. In European Con-
ference on Modelling Foundations and Applications, pages 267–284.
Springer.

[23] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot.
Model-driven development of odata services: An application to re-
lational databases. In 2018 12th International Conference on Research
Challenges in Information Science (RCIS), pages 1–12. IEEE.

[24] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, Abel Gómez,
Massimo Tisi, and Jordi Cabot. Emf-rest: generation of restful apis
from models. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing, pages 1446–1453. ACM.

[25] Kalvin Eng, Diego Serrano, Eleni Stroulia, and Jacob Jaremko.
(semi) automatic construction of access-controlled web data ser-
vices. In Proceedings of the 28th Annual International Conference on
Computer Science and Software Engineering, pages 72–80. IBM Corp.

[26] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry
Masinter, Paul Leach, and Tim Berners-Lee. Hypertext transfer
protocol–http/1.1, 1999.

[27] Roy T Fielding and Richard N Taylor. Architectural styles and the
design of network-based software architectures, volume 7. University of
California, Irvine Doctoral dissertation, 2000.

[28] Roy T Fielding and Richard N Taylor. Principled design of the
modern web architecture. ACM Transactions on Internet Technology
(TOIT), 2(2):115–150, 2002.

[29] Markus Fischer. Model-driven code generation for REST APIs. Thesis,
2015.

100

Bibliography

[30] Ned Freed and Nathaniel Borenstein. Multipurpose internet mail
extensions (mime) part two: Media types. Technical report, rfc 2046,
November, 1996.

[31] Hilary Glasman-Deal. Science research writing for non-native speakers
of English. World Scientific, 2010.

[32] Chenkai Guo, Jing Xu, Hongji Yang, Ying Zeng, and Shuang Xing.
An automated testing approach for inter-application security in an-
droid. In Proceedings of the 9th international workshop on automation
of software test, pages 8–14. ACM, 2014.

[33] Florian Haupt, Dimka Karastoyanova, Frank Leymann, and Ben-
jamin Schroth. A model-driven approach for rest compliant ser-
vices. In 2014 IEEE International Conference on Web Services, pages
129–136. IEEE.

[34] Florian Haupt, Frank Leymann, Anton Scherer, and Karolina
Vukojevic-Haupt. A framework for the structural analysis of rest
apis. In 2017 IEEE International Conference on Software Architecture
(ICSA), pages 55–58. IEEE, 2017.

[35] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. Empirical assessment of mde in industry. In Proceed-
ings of the 33rd international conference on software engineering, pages
471–480. ACM, 2011.

[36] Jeong-cheol Jeon and Jaehwa Chung. Developing a prototype of
rest-based database application for shipbuilding industry: A case
study. In 2017 International Conference on Platform Technology and
Service (PlatCon), pages 1–6. IEEE.

[37] Jill K Jesson and Fiona Lacey. How to do (or not to do) a critical
literature review. 2006.

[38] Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Alef Arendsen, Darren Davison,
Dmitriy Kopylenko, Mark Pollack, et al. The spring framework–
reference documentation. interface, 21:27, 2004.

[39] Barbara Kitchenham and Stuart Charters. Guidelines for perform-
ing systematic literature reviews in software engineering. 2007.

[40] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research
methods in human-computer interaction. Morgan Kaufmann, 2017.

101

Bibliography

[41] Rensis Likert. A technique for the measurement of attitudes.
Archives of psychology, 1932.

[42] Zhifang Liu, Xiaopeng Gao, and Xiang Long. Adaptive random
testing of mobile application. In 2010 2nd International Conference on
Computer Engineering and Technology, volume 2, pages V2–297. IEEE,
2010.

[43] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Inves-
tigating web apis on the world wide web. In 2010 Eighth IEEE
European Conference on Web Services, pages 107–114. IEEE, 2010.

[44] Robert C Martin. The principles of ood. url: http://butunclebob.
com/articles. unclebob. PrinciplesOfOod (visited on 01/09/2017),
2003.

[45] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform
resource identifier (uri): Generic syntax. 2005.

[46] Eric J Miller. An introduction to the resource description frame-
work. Journal of library administration, 34(3-4):245–255, 2001.

[47] Shahid Mujtaba, Kai Petersen, Robert Feldt, and Michael Matts-
son. Software product line variability: A systematic mapping study.
School of Engineering, Blekinge Inst. of Technology, 2008.

[48] Shahid Mujtaba, Kai Petersen, Robert Feldt, and Michael Matts-
son. Software product line variability: A systematic mapping study.
School of Engineering, Blekinge Inst. of Technology, 2008.

[49] Gary W Oehlert. A first course in design and analysis of experiments.
2010.

[50] Elizabeth J O’Neil. Object/relational mapping 2008: hibernate and
the entity data model (edm). In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, pages 1351–
1356. ACM, 2008.

[51] Noel Pérez et al. Research methodology: An example in a real
project. Retrieved on April, 10:2014, 2009.

[52] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Odata version
4.0 part 1: protocol. OASIS Standard. Available online: http://docs.
oasis-open. org/odata/odata/v4. 0/os/part1-protocol/odata-v4. 0-os-part1-
protocol. pdf (accessed on 10 December 2017), 2014.

102

Bibliography

[53] Michael Pizzo, Ralf Handl, and Martin Zurmuehl. Odata version
4.0 part 2: Url conventions. OASIS, Tech. Rep., 2014.

[54] ProgrammableWeb.com. Apis show faster growth rate in 2019
than previous years, 2019. https://www.programmableweb.com/

news/research-shows-interest-providing-apis-still-high/

research/2018/02/23, Last accessed on June 2019.

[55] Xhevi Qafmolla and Viet Cuong Nguyen. Automation of web ser-
vices development using model driven techniques. In 2010 The 2nd
International Conference on Computer and Automation Engineering (IC-
CAE), volume 3, pages 190–194. IEEE, 2010.

[56] Alek Radjenovic and Richard F Paige. Behavioural interoperability
to support model-driven systems integration. In Proceedings of the
First International Workshop on Model-Driven Interoperability, pages
98–107. ACM, 2010.

[57] Digvijaysinh M Rathod, Satyen M Parikh, and BV Buddhadev.
Structural and behavioral modeling of restful web service interface
using uml. In 2013 International conference on intelligent systems and
signal processing (ISSP), pages 28–33. IEEE.

[58] Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s
top “restful” services and why they are not restful. In International
Conference on Web Information Systems Engineering, pages 354–367.
Springer, 2012.

[59] Diaeddin Rimawi and Samer Zein. A model based approach for
android design patterns detection. In 2019 3rd International Sympo-
sium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
pages 1–10. IEEE, 2019.

[60] Guy M Robinson. Methods and techniques in human geography. John
Wiley & Son Ltd, 1998.

[61] Ángel Mora Segura, Jesús Sánchez Cuadrado, and Juan de Lara.
Odaas: Towards the model-driven engineering of open data applica-
tions as data services. In 2014 IEEE 18th International Enterprise Dis-
tributed Object Computing Conference Workshops and Demonstrations,
pages 335–339. IEEE.

[62] Diego Serrano, Eleni Stroulia, Diana Lau, and Tinny Ng. Linked
rest apis: a middleware for semantic rest api integration. In 2017

103

https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23
https://www.programmableweb.com/news/research-shows-interest-providing-apis-still-high/research/2018/02/23

Bibliography

IEEE International Conference on Web Services (ICWS), pages 138–145.
IEEE.

[63] David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Ar-
naud Lanoix. Extending openapi 3.0 to build web services from
their specification. In International Conference on Web Information
Systems and Technologies.

[64] David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Ar-
naud Lanoix. A model-driven method for fast building consistent
web services from openapi-compatible models. In International Con-
ference on Model-Driven Engineering and Software Development, pages
9–33. Springer.

[65] Harmeet Singh and Syed Imtiyaz Hassan. Effect of solid design
principles on quality of software: An empirical assessment. Interna-
tional Journal of Scientific and Engineering Research, 6(4), 2015.

[66] Steffen Staab, Tobias Walter, Gerd Gröner, and Fernando Silva Par-
reiras. Model driven engineering with ontology technologies. In
Reasoning Web International Summer School, pages 62–98. Springer,
2010.

[67] Nı́rondes AC Tavares and Samyr Vale. A model driven approach
for the development of semantic restful web services. In Proceedings
of International Conference on Information Integration and Web-based
Applications and Services, page 290. ACM.

[68] Branko Terzić, Vladimir Dimitrieski, Slavica Kordić, Gordana
Milosavljević, and Ivan Luković. Development and evaluation of
microbuilder: a model-driven tool for the specification of rest mi-
croservice software architectures. Enterprise Information Systems,
12(8-9):1034–1057, 2018.

[69] Bo Wang, Doug Rosenberg, and Barry W Boehm. Rapid realization
of executable domain models via automatic code generation. In
2017 IEEE 28th Annual Software Technology Conference (STC), pages
1–6. IEEE.

[70] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineer-
ing. Springer Science & Business Media, 2012.

104

Bibliography

[71] Christoforos Zolotas, Themistoklis Diamantopoulos, Kyriakos C
Chatzidimitriou, and Andreas L Symeonidis. From requirements
to source code: a model-driven engineering approach for restful
web services. Automated Software Engineering, 24(4):791–838, 2017.

105

	Declaration
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Introduction and motivation
	Problem statement and main research projects
	Research Gap and study objectives
	Findings and contribution
	Main research phases
	Overview of this report

	Background
	REST – Representational State Transfer
	Principles
	Operations

	ORM – Object Relational Mapping
	Entity model

	MDE – Model Driven Engineering
	Metamodel
	Transformations
	Advantages of MDE
	Disadvantages of code generation in MDE
	Resource metamodel
	Deployment metamodel
	REST APIs modeling language (RAML)
	Domain Specific Languages (DSL)
	EMF – Eclipse modeling framework

	RDF ontology model based
	Data Model

	OData – Open Data Protocol
	OpenAPI specification

	Literature Review
	Introduction
	Literature search methodology
	Method
	Source database
	Search strings
	Study selection criteria
	Critical literature review

	Guidance approaches
	EMF based approaches
	Model-driven code generation
	RDF ontology model based approaches
	OpenAPI model based approaches
	Highlight the gap of knowledge
	Summary

	Research Methodology
	Introduction
	Experimental research
	Experiment design
	Hypotheses
	Procedure

	Data Collection
	Data Analysis

	Implementation
	Developed solution - RAAG Framework
	Value added features
	Technologies and platforms
	Integration
	Architecture and design

	Proposed approach
	Objectives realization
	Reference application

	Evaluation
	Model example as learning material
	Model exercise for experiment
	Survey
	Experiment
	Participants
	First group
	Second group

	Results and discussion
	Survey Results
	Sufficiency of learning material
	Reliability of experiment
	Framework quality

	Experiment Results
	Collected data
	Analysis

	Threats to Validity

	Conclusions
	Summary
	Goals achieved
	Recommendations

	Tabular Information
	Related work
	Implemented survey
	Results of 1st experiment
	Results of 2nd experiment

	Code Snippets
	Model driven software development
	Resource description framework

	Source Code
	Training example
	Model
	Services

	Experiment assignment
	Model
	Services

	Bibliography

